最近在看CFA L2,好好把BS model研究了一下,现在说说我的理解。
按国外教材/楼上高票答案的理解:
N(d1)是在风险中性条件下,按股票计价时得到的期权被执行的可能性,N(d2)是在风险中性条件下,按货币计价时得到的期权被执行的可能性。
期权的价值是货币计价,现在假设是元。所以
,第一项可以理解为到期时所能得到的货币价值,第二项可以理解为到期时所要付出的货币价值。所以期权的价值就是我们得到的价值减去付出的价值。
关于第二项,到期时付出的是Cash,单位是货币(元),货币计价是 K元。
到期时付出的价值(折现)应该是执行期权时付出的价值加上不执行期权时付出的价值,即 Ke^(-rt) × N(d2) + 0×(1-N(d2)) = Ke^(-rt) × N(d2)。但由于不执行期权时所付出的价值为0,所以到期时付出的价值也就等于到期时执行期权所付出的货币价值。
关于第一项,到期时得到的是1份股票,计价单位是股票,转换成货币计价是1×S元。
到期时如果执行期权(S>K),则会把股票转换成货币,这样得到的货币价值是1×S×N(d1) , 如果不执行期权(SK时,我才会选择把股票转换成货币,这时股票计价是1份股票,转换成货币计价得到S元;如果股价太低,低于K,把股票转换成货币是不划算的,所以会选择不转换成货币,这时股票计价仍是1份股票,但货币计价是0元。和期权out of money时同理,可以把1份“股票”理解成1份期权,“货币计价转换”理解成期权的执行,只有S>K,期权才会执行,即进行货币计价转换,期权有价值,货币计价转换后有价值。否则不会执行期权,即不进行货币计价转换,期权价值为0,货币计价为0。所以N(d1)就是在股票计价时,期权执行的概率,它会随着S的增大而增大)
因为不执行期权时,第一项和第二项的货币价值都是0。所以Call的价值就等于当期权执行时,所得到的货币价值减去所付出的货币价值,即
或者,根据CFA网课中老师的理解加上我自己的理解(有点不严谨,但可以大致参考理解下)
类比的是Forward的定价,P(forward)= S - Ke^(-rt)。Forward到期时是一定会执行,但期权不一定。
所以
Nd2描述的是期权执行的概率。
Nd1也就是Delta,描述的是股价变动对期权价值的影响。如果股价上涨1块钱,期权价值的上涨幅度是1×N(d1) 。
关于第一项,我们计算的是期权的价值,而不是股票的价值。
如果计算的是股票价值,到期时价格为S,我们能得到的价值就是S(理解成S-0)。
但现在计算的是期权价值,应乘以N(d1) ,也就是S×N(d1) (理解成(S-0)×N(d1)),即在Forward公式第一项乘以N(d1) 。
关于第二项,Ke^(-rt) 乘以 N(d2) 就是当期权执行时付出的期权价值,即在Forward公式第二项乘以N(d2) 。
所以Call的价值就等于当期权执行时,所得到的期权价值减去所付出的期权价值。
学了几年BS model,今年终于好好研究了一下,如果有什么错误,欢迎指正~~ |