点击上方蓝色字体,关注我们
福利大礼包领取
关注回复“135”免费领取“高中数学函数性质分类汇总”
回复“136”免费领取“高考英语完形填空高频词汇总”
持续更新,敬请期待!
知识点1:单调性
一、单调性的证明方法:定义法及导数法
1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x10,则f(x)在区间D内为增函数;如果f′(x)0),则f(x)为周期函数且2a是它的一个周期。
3、若函数f(x+a)=f(x-a),则是以T=2a为周期的周期函数
4、y=f(x)满足f(x+a)=1/f(x) (a>0),则f(x)为周期函数且2a是它的一个周期。
5、若函数y=f(x)满足f(x+a)= -1/f(x)(a>0),则f(x)为周期函数且2a是它的一个周期。
6、f(x+a)={1-f(x)}/{1+f(x)},则是以T=2a为周期的周期函数。
7、f(x+a)={1-f(x)}/{1+f(x)},则是以T=4a为周期的周期函数。
8、若函数y=f(x)满足f(x+a)={1-f(x)}/{1+f(x)}(x∈R,a>0),则f(x)为周期函数且4a是它的一个周期。
9、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a)是它的一个周期。
10、函数y=f(x)x∈R的图象关于两点A(a,y)、B(b,y),a |
|