目前上过的最好的算法课,这位老爷爷师承高德纳,但又不像The Art of Computer Programming那么偏理论天书范……他写的算法红宝书也是广受追捧,看他上课的确是种享受,娓娓道来,各种图表动画,脉络清晰。这门课的作业也很赞,有理论问题,有面试常见问题,还有编程大作业三部分。其中编程大作业难度挺大,课题都很有趣,比较偏工程,只给一个API的框架然后自己去实现整个流程(也就是不光包括核心算法,也有文件IO,数据预处理之类的东西),每次都要做上好几个钟头。编程作业的评判也是相当严格,会考察代码风格,运行时间,消耗内存,API调用次数等等额外的东西,让我这个专业搞测试的人都有点汗颜了……说了这么多,这门课还是有个致命缺点……所有普林斯顿的课程都没有证书,连得分记录都没有……唉,本来是有望角逐第一神课的啊!
37. 密歇根大学的 Applied Data Science with Python 这个系列课程我没有上,因为本身对Python,numpy,pandas,sklearn之类都已经比较熟悉了。不过对于想从事数据工作的人来说,都可以跟一下这个课入个门。Python本身学习曲线很低,掌握之后的生产率提升又很明显,性价比相当高!看了下课程内容安排都挺合理,根据我之前上密歇根大学的其它课程经验来看应该不会差。欢迎有上过此系列课程的同学提供反馈。
Become a Digital Marketer If your dream job combines creative thinking, analytics, and a passion for social media, digital marketing could be a perfect fit for you.
Become a Data Scientist Data science is one of today’s fastest-growing fields, with career opportunities in every industry.
Become a Mobile Developer With billions of mobile devices in use around the world, opportunities in mobile development are growing exponentially. On Coursera, you can learn to build apps for the two most common mobile platforms, Android and iOS, in just a few courses.
Become a Web Developer Career opportunities in computer science are growing repidly, and web development is one of the most versatile and accessible skills you can learn.
Become a Machine Learning Engineer Pursue a career in creating the products of the future - including speech recognition, genome analysis, and artificial intelligence.
Become a Financial Analyst If you’re looking for an opportunity to apply your passion for data and mathematics in a fascinating, fast-paced field, financial analysis could be your perfect career path.
Become a Manager Learn to lead thoughtfully, think strategically, and inspire your employees and colleagues.
Become an Entrepreneur Develop an entrepreneurial mindset, learn the basics of business management, and create your own dream job.
how to read carefully, write effective arguments, understand the writing process, engage with others’ ideas, cite accurately, and craft powerful prose.
Coursera创始人之一 Andrew Ng 的课程,同时也是Coursera平台上最经典的课程之一。只要你对计算机科学感兴趣,或者对数据处理感兴趣,我就推荐你上这门课。不用担心自己没有计算机专业背景会听不懂这门课,因为和大多数导论性课程一样ML回避了大部分的数学内容。使用Octave(一种和Matlab语言相同的开源软件)的实验并不需要高级的编程能力,Matlab语言简单易懂,所以即使你没有任何编程经验也不用担心
在这门课上,连编译器都值得你观摩学习!Robert Sedgewick教授师从图灵奖和冯·诺依曼奖获得者Donald Knuth,现在他是普林斯顿大学计算机系创始人,Adobe董事会成员。这门课的另一位教授是Kevin Wayne,他们两人合著了经典教材《算法》。Union-Find,Analysis of Algorithms,Stacks and Queues,Elementary Sorts,Mergesort,Quicksort,Priority Queues,Elementary Symbol Tables,Balanced Search Trees,Geometric Applications of BSTs,Hash Tables
Analysis of Algorithms,Recurrences,Solving recurrences with GFs,Asymptotics,The symbolic method,Trees,Permutations,Strings and Tries,Words and Mappings
我读过的几个,确实很喜欢的(都完成了考试、拿到证书的),如下: - The Modern World: Global History since 1760 University of Virginia的Philip Zelikow教授教的,学时14周,真的很好的历史课(今年的session是1月14日开课,五星推荐。这课的授课录像我全下载了,值得收藏)。当初我是开课一半了才读,所以最后虽然拿到证书,但分数比较低(太多的penalty,扣了很多分,五、六个星期的课都是我后来补上的) 补充:这门课的亮点在于,用另外的视角看待历史,带着“为什么”而不是“什么时候发生了什么”的问题去研究历史,所以相当有启发 很多人问我可不可以分享下载的课程,今天在iTunes U里发现有这个课程,且可以下载全部视频,这里是该课链接:https://itunes.apple.com/ch/course/the-modern-world-global-history-since-1760/id802769613?l=en
- Archaeology's Dirty Little Secrets Brown University的Sue Alcock教授教的,学时8周,作业好多,但都是那种让你爱做的,而且讨论区极活跃,我们都在期待有ADLS2 更新:这个课程的新session二月24日又要开课了,这里是注册网址:Coursera.org 我想补充一下这课的情况说明。这门课主要介绍如今的考古是怎样的,我们如何对待考古发现等问题,每周除了要写的作业,还有一个quiz。那8周的作业每次都有三个选项,一个基本是理论的,一个是动手的,另一个是建议性的。我记得自己分析过断层现象、做过用Google Maps查看古迹、学写过楔形文字、做过3D建模、写过遗迹观察报告……所以我说作业都是让人爱做的。若有人喜欢考古,喜欢了解,那么这是门相当棒的课程
- Climate Literacy: Navigating Climate Change Conversations University of British Columbia的Sarah Burch教授和Sara Harris教授教的,学时10周,极长知识,还要写两个essays,讨论区也特别让人留恋 补充:写第一个essay时我未得要领,没明白论文目的是要全面地展示问题,我带着中国式的思维方式去指出问题,但欠缺数据支持,结果分数不够高,第二篇就写得好多了
补充: - A Beginner's Guide to Irrational Behavior Duke University的Dan Ariely教授教的,这是门心理学课程,相当有意思,也相当推荐,但作业、阅读量都比较大,还要写论文,当时我也是时间冲突没完成,但授课录像和阅读材我全部下载了,慢慢研究,也可能会再读一次
- Roman Architecture Yale University的Diana E.E. Kleiner教授教的,是我正在读的课程,准备完成所有作业。就目前来看也是个相当有意思的课程,是当初念ADLSy课时同学推荐的
- Plagues, Witches, and War: The Worlds of Historical Fiction University of Virginia的Bruce Holsinger教授教的。遗憾得很,我刚注册,课程就结束了,看了一点儿录像,发觉是自己喜欢的课程,只能等下一次了,但视频值得收藏
- Constitutional Struggles in the Muslim World University of Copenhagen的Dr Ebrahim Afsah教的,他的语速极慢,我都是调到1.5x速听课。这门课我当作知识来听,只做quiz不写论文(共两篇),论坛上的讨论容易过火,所以不怎么参加
在我的Watchlist上的还有下面这些课程: - Greek and Roman Mythology (University of Pennsylvania) - Internet History, Technology, and Security (University of Michigan) - A History of the World since 1300 (Princeton University) - Introduction to Astronomy (Duke University) - Introduction to Philosophy (University of Edinburg) - Critical Thinking in Global Challenges (University of Edinburg) 1月20号(今天)开课 - Introduction to Mathematical Thinking (Stanford University) - The Ancient Greek (Wesleyan University) 去年我曾上过一段时间,时间冲突,加上教授不如Philip Zoelikow有魅力,就放弃了,但ADLS的同学推荐,所以准备今年重新来过 - The Camera Never Lies (University of London) - Online Games: Literature, New Media, and Narrative (Vanderbilt University) - 史記(一)(國立臺灣大學) - 崑曲之美 (香港中文大學) - 中國人文經典導讀 (香港中文大學) - Introduction to Classical Music (University of Michigan) - How Green Is That Product? An Introduction to Life Cycle Environmental Assessment(Northwestern University) - Conditions of War and Peace (University of Tokyo) - Comic Books and Graphic Novels (University of Colorado Boulder) - Introduction to Public Speaking (University of Washington) - The Fall and Rise of Jerusalem (Tel Aviv University) - Genetics and Society: A Course for Educators (American Museum of Natural History) - 9/11 and Its Aftermath (Duke University) - International Organizations Management (University of Geneva) - The Holocaust (University of California, Santa Cruz) - Climate Change (University of Melbourne) - The Diversity of Exoplanets (University of Geneva) - The Emergence of the Modern Middle East (Tel Aviv University) - Globalization and You (University of Washington) - Coaching Teachers: Promoting Changes that Stick (Match Teacher Residency)
Social and Economic Networks: Models and Analysis (Coursera, Stanford): Week 2 Centrality - Eigenvector (13分钟)。虽然这门课没有直接讲PageRank算法,但是Eigenvector来衡量一个节点的Centrality其实就是PageRank的基本思想了。不过这里和PageRank稍不同的是课程举的例子是无向图,而不是有向图。
每个人都应该上的课!老师语速适中,非常优雅,如沐春风。当年春节她还留言回复我Happy Chinese New Year. 这门课改变了我的饮食习惯,学完你会看食品包装的配方表,你会明白所有“100%, 纯天然,All nature”之类的广告词全是假的,你会明白保健品到底有没有用,FDA到底是做什么的,你会知道“Eat like a rainbow” and "Eat Whole Food". 很有良心的课。