1、波动率定义及分类
波动率通常定义为价格连续复利收益率的标准差,是衡量价格波动的百分比,只体现价格波动幅度的大小,而不考虑价格变动的方向,即价格波动的剧烈程度。当其他因素不变,波动率越高期权的价格也越高,即与期权权利金成正相关关系。
通常,波动率可以分为以下四类:
1) 历史波动率,是对一个特定时段里,每日回报年度化的标准偏差。计算历史波动率时要确定时间段和价格取值方式,时间段可以是最近的30天、90天或任何适当天数;价格通常采用每天的收盘价。计算步骤为先计算出每天的对数收益率,然后取这段时期的对数收益率的标准差,最后进行年化调整。
2) 未来价格波动率,指的是在未来某个时段里每日回报年度化的标准偏差,一般是指从现在到一个期权的到期日。在利用B-S期权定价模型计算期权理论价格时,原定义需要的是未来价格波动率,不幸的是,期货的波动率只有在变为历史波动率才是可知的。因此在期权定价公式里的波动率只是对期货波动率的估量。
3) 预期价格波动率,是期权交易者根据市场情况与历史数据对未来的价格波动率做出的一种预测。是对未来波动率的一种估量,交易者将它用在期权定价公式里,对一个期权的理论价格做评估。
4) 隐含波动率(Implied volatility)是将市场上的期权或权证交易价格代入权证理论价格模型(Black-Scholes模型),反推出来的波动率数值。利用B-S期权定价模型,将期权实际价格以及除波动率σ以外的其他参数代入公式而反推出的波动率。期权的实际价格是由众多期权交易者竞争而形成,因此,隐含波动率代表了市场参与者对于市场未来的看法和预期,从而被视为最接近当时的真实波动率。
在以上四类波动率中,历史波动率最易获得,隐含波动率最接近真实波动率,因此是实际应用最多的两种波动率。不过,隐含波动率是利用实际期权价格倒推而得,利用隐含波动率计算当时的实际期权价格便成为一种不现实。计算期权理论价格时最常用的仍然是历史波动率。
2、波动率斜率:微笑与偏斜
波动率斜率
波动率斜率描述在标的物相同、到期日相同,但执行价格不同的期权按不同的隐含波动率进行交易。每一个执行价的同月份期权都会对应一个隐含波动率,如果我们把横轴取为执行价,而纵轴取为隐含波动率,则我们可以发现隐含波动率关于执行价格的函数不是一条水平的直线,而是一个曲线。
波动率微笑
而波动率微笑(volatility smile) 表示波动率在保持到期日不变的情况下随执行价格变化情况,进一步解释是虚值期权(out of money) 和实值期权(in the money)的波动率高于平值期权(at the money)的波动率,形成一条中间低两边高的向上半月形,形状像“微笑”。波动率微笑多出现在外汇期权市场。
波动率偏斜
在大多数情况下,波动率并不总是微笑的,我们称之为波动率偏斜。波动率偏斜也分为两种,一是广义的波动率偏斜,指的是各种形状的波动率曲线。二是狭义的波动率偏斜, 专指低执行价的隐波高于高执行价隐波的波动率曲线。造成波动率偏斜现象的原因解释主要有三种:
指数短期暴涨的概率要低于暴跌的,市场交易者对下方的保护要求多于对上方投机的贪婪。
期权交易策略中有人偏好卖出较高执行价的看涨期权,同时买入较低执行价认沽,当作股价下行风险的保险,这样的供需关系也就决定了低执行价期权具有高的隐含波动率,而高执行价期权具有低的隐含波动率。
隐含波动率可以视为市场未来收益的不确定性。股市下跌时将产生更多的恐慌与不确定性。例如,变化相同绝对值的数量,下跌时其跌幅会越来越大,而上涨时其涨幅会变得越来越少,如此会引起人们对下跌时产生更多恐慌。
为什么会有斜率存在
一种可能的解释为,因为期权的价格是由供求关系决定的,对不同的期权有不同的供求力量。因为期权可以同保险相比,而执行价可以同折扣相比,这就使不同执行价的期权有不同的保护,可以有不同的供给和需求的因素。这就可能像“便宜的保险”有更多的需求一样,绝对价格较低的保险有更多的需求。
为了满足更大的需求,按照这个推理,低成本保险的出售者就要求有“高风险的保证金”。这就意味着较高的隐含波动率,而不是较高的决定价格。
波动率斜率是如何影响交易决策的
交易者做预测时必须考虑到波动率斜率的存在。譬如,假定相对平值期权执行价A来说,虚值期权桥定价O在较高的的隐含波动率上交易。随着期货的价格从执行价A运动到执行价O,很可能会有这样的倾向--使用执行价O 的看涨期权和看跌期权的隐含波动率会下降,而是用执行价A 的看涨和看跌期权的隐含波动率会上升。
如果其他因素都不变,波动率斜率的存在对虚值期权的买家来说,往往是一个不利因素。当然,其他因素可能保持不变,出现这种情况的机会也是微乎其微的。隐含波动率的总体水平可能会UI发生变化,波动率斜率的坡度也可能发生变化。这两种市场情况的变化都会产生对具体期权策略有利的或不利的影响。因此,期权的交易者必须考虑到波动率斜率的存在,以及隐含波动率的总体水平。 |
|