1什么是插值算法?




下面简单证明下n+1个函数节点确定一个唯一的多项式:


注1就是如果限制多项式中最高次幂是n那么这个多项式是唯一确定的,否在则不唯一。注意一般来说给我们n+1个节点一般来说只需要求最高次幂是n的即可。
注意这一个结论:给定你n个点,那么你能找到n-1阶的多项式。




注意:实际进行插值是不可能用到拉格朗日插值的,因为会产生很多问题。



注意:分段线性插值由于只考虑临近的2个点,所以我们也不考虑使用这个方法。

注意重要一点当给出n+1个不同节点时可以建立唯一一个n次函数。
上面是拉格朗日插值算法,下面是牛顿插值法:


注意:由于拉格朗日和牛顿插值都存在龙格现象所以实际建模中不可能用到这两个方法。



注意上面讲朗格朗日插值,分段插值,牛顿插值都是为了引出分段三次埃尔米特插值,上面主要了解,所以重点掌握下面埃尔米特插值如何使用。
注意matlab有现成的函数去进行埃尔米特插值

上面这个分段三次埃尔米特插值算法很常用,一定要记住。



 
注意interpn了解即可







|