pytorch服务不像tf那样可以进行直接部署,需要自己搭建服务才行
我这个代码是拿自己之前手动部署tf基础上改的,所以上面有tf的痕迹
服务端:
from flask import Flask, render_template, request, redirect, url_for, flash, jsonify
#from tensorflow.keras.models import load_model
import cv2
import numpy as np
#import tensorflow as tf
import uuid
import numpy as np
# load model
def get_model():
global graph
graph = tf.compat.v1.get_default_graph()
with graph.as_default():
global model
model = load_model('model.h5')
app = Flask(__name__)
#get_model()
"""
@app.route('/predict', methods=['POST'])
def upload_image():
with graph.as_default():
if request.method == 'POST':
#print(request.get_json())
response = {'success': True}
print(response)
# Prepare image for model
get_image=request.get_json()['input_image']
#print(get_image)
#get_image_tensor=tf.convert_to_tensor(get_image)
#resized = tf.image.resize(get_image_tensor, [256, 256])
#print(get_image_tensor)
#normalized = (get_image_tensor / 127.5) - 1
#print(normalized)
#batched = tf.expand_dims(get_image_tensor, 0)
#print(batched)
# Apply model!
model.summary()
predicted = model.predict(get_image,steps=1)
print(predicted)
predicted = predicted[0,:,:,:]
print(predicted)
unnormalized = (predicted + 1) / 2
# Save result on disk to eventually show to user
result_name = 'static/tmp/{}.jpg'.format(uuid.uuid4())
cv2.imwrite(result_name, unnormalized * 255)
response['processed_image'] = result_name
return jsonify(response)
"""
import torch
new_model = torch.load('./checkpoints/coconew/latest_net_G.pth')
new_model.eval()
print(new_model)
import numpy
@app.route('/predict', methods=['POST'])
def upload_image():
if request.method == 'POST':
#print(request.get_json()['input_image'])
response = {'success': True}
print(response)
# Prepare image for model
get_image=request.get_json()['input_image']
#print(get_image)
#get_image_tensor=tf.convert_to_tensor(get_image)
#resized = tf.image.resize(get_image_tensor, [256, 256])
#print(get_image_tensor)
#normalized = (get_image_tensor / 127.5) - 1
#print(normalized)
#batched = tf.expand_dims(get_image_tensor, 0)
#print(batched)
# Apply model!
#new_model.summary()
get_image=torch.from_numpy(numpy.array(get_image))
predicted = new_model(get_image)
print(predicted)
predicted = predicted[0,:,:,:]
unnormalized = (predicted + 1) / 2
# Save result on disk to eventually show to user
result_name = 'static/tmp/{}.jpg'.format(uuid.uuid4())
cv2.imwrite(result_name, unnormalized * 255)
response['processed_image'] = result_name
return jsonify(response)
# flask will check if raised exception is of type 'SomeException' (or lower)
# if so, will just execute this method
@app.errorhandler(ValueError)
def handle_error(error):
print("完蛋")
response = jsonify({'message': str(error)})
return response
if __name__ == "__main__":
app.run(debug=True)
客户端
from __future__ import print_function
#import tensorflow as tf
import base64
import requests
import cv2
# model with the name "pix2pix" and using the predict interface.
SERVER_URL = 'http://localhost:5000/predict'
import numpy as np
#from __future__ import absolute_import, division, print_function, unicode_literals
import json
import tensorflow as tf
import numpy as np
import os
import time
from matplotlib import pyplot as plt
from IPython import display
#import tensorflow as tf
#import tensorflow.contrib.eager as tfe
#tf.enable_eager_execution()
#import tensorflow.contrib.eager as tfe
#tfe.enable_eager_execution()
#import tensorflow as tf
#tf.enable_eager_execution()
BUFFER_SIZE = 400
BATCH_SIZE = 1
IMG_WIDTH = 256
IMG_HEIGHT = 256
##定义加载图片的函数
def load(image_file):
image = tf.io.read_file(image_file)
image = tf.image.decode_jpeg(image)
w = tf.shape(image)[1]
w = w // 2
real_image = image[:,:w, :]
input_image = image[:, w:, :]
input_image = tf.cast(input_image, tf.float32)
real_image = tf.cast(real_image, tf.float32)
return input_image, real_image
##定义resize函数
def resize(input_image, real_image, height, width):
input_image = tf.image.resize(input_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
real_image = tf.image.resize(real_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return input_image, real_image
##定义随机剪裁函数
def random_crop(input_image, real_image):
stacked_image = tf.stack([input_image, real_image], axis=0)
cropped_image = tf.image.random_crop(
stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])
return cropped_image[0], cropped_image[1]
# normalizing the images to [-1, 1]
def normalize(input_image, real_image):
input_image = (input_image / 127.5) - 1
real_image = (real_image / 127.5) - 1
return input_image, real_image
@tf.function()
def random_jitter(input_image, real_image):
"""先把size设置为286*286,然后进行随机剪裁"""
# resizing to 286 x 286 x 3
input_image, real_image = resize(input_image, real_image, 286, 286)
# randomly cropping to 256 x 256 x 3
input_image, real_image = random_crop(input_image, real_image)
if tf.random.uniform(()) > 0.5:
# random mirroring
input_image = tf.image.flip_left_right(input_image)
real_image = tf.image.flip_left_right(real_image)
return input_image, real_image
##加载训练数据
def load_image_train(image_file):
input_image, real_image = load(image_file)
input_image, real_image = random_jitter(input_image, real_image)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
##加载测试数据
def load_image_test(image_file):
input_image, real_image = load(image_file)
input_image, real_image = resize(input_image, real_image,
IMG_HEIGHT, IMG_WIDTH)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
PATH = os.path.join(os.path.dirname('/opt/AI/facades/'), '/opt/AI/facades/')
train_dataset = tf.data.Dataset.list_files(PATH+'train/*.jpg')
train_dataset = train_dataset.map(load_image_train,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.batch(BATCH_SIZE)
test_dataset = tf.data.Dataset.list_files(PATH+'test/*.jpg')
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(BATCH_SIZE)
import numpy
a=numpy.ones([184,256,256])
print(a)
num=1
i=0
for inp, tar in test_dataset.take(num):
payload = {
"instances": [{'input_1': inp.numpy()[0].tolist()}]
}
#predict_request='{"input_image":%s}' %inp.numpy().tolist()
predict_request={"input_image":inp.numpy().tolist()}
#predict_request={"input_image":a.tolist()}
print(inp.numpy()[0])
#print(predict_request)
#json_request = '{{ "instances" : {} }}'.format(np.array2string(inp.numpy(), separator=',')
#print(predict_request)
response=requests.post(SERVER_URL, json=predict_request)
response.raise_for_status()
print(response)
prediction = response.json()['predictions']
print(prediction)
tmp=np.ones((256, 256,3))
prediction=127.5*(prediction+tmp)
print(prediction)
# prediction=prediction.astype(int)
#print(prediction)
cv2.imwrite('./md'+str(i)+'.jpg',prediction[0])
i=i+1
这里可以自己写客户端,这个里面是直接使用facades里面的数据集,就没改了 |