Cisco路由技术基础知识详解 路由器 <一> 最简单的网络可以想象成单线的总线,各个计算机可以通过向总线发送分组以互相通信。但随着网络中的计算机数目增长,这就很不可行了,会产 生许多问题: 1、带宽资源耗尽。 2、每台计算机都浪费许多时间处理无关的广播数据。 3、网络变得无法管理,任何错误都可能导致整个网络瘫痪。 4、每台计算机都可以监听到其他计算机的通信。 把网络分段可以解决这些问题,但同时你必须提供一种机制使不同网段的计算机可以互相通信,这通常涉及到在一些ISO网络协议层选择性地在网段间传送数据,我们来看一下网络协议层和路由器的位置。 我们可以看到,路由器位于网络层。本文假定网络层协议为IPv4,因为这是最流行的协议,其中涉及的概念与其他网络层协议是类似的。 一、路由与桥接 路由相对于2层的桥接/交换是高层的概念,不涉及网络的物理细节。在可路由的网络中,每台主机都有同样的网络层地址格式(如IP地址),而无论它是运行在以太网、令牌环、FDDI还是广域网。网络层地址通常由两部分构成:网络地址和主机地址。 网桥只能连接数据链路层相同(或类似)的网络,路由器则不同,它可以连接任意两种网络,只要主机使用的是相同的网络层协议。 路由器 <二> 二、连接网络层与数据链路层 网络层下面是数据链路层,为了它们可以互通,需要“粘合”协议。ARP(地址解析协议)用于把网络层(3层)地址映射到数据链路层(2层)地址,RARP(反向地址解析协议)则反之。
虽然ARP的定义与网络层协议无关,但它通常用于解析IP地址;最常见的数据链路层是以太网。因此下面的ARP和RARP的例子基于IP和以太网,但要注意这些概念对其他协议也是一样的。 1、地址解析协议 网络层地址是由网络管理员定义的抽象映射,它不去关心下层是哪种数据链路层协议。然而,网络接口只能根据2层地址来互相通信,2层地址通过ARP从3层地址得到。 并不是发送每个数据包都需要进行ARP请求,回应被缓存在本地的ARP表中,这样就减少了网络中的ARP包。ARP的维护比较容易,是一个比较简单的协议。 2、简介 如果接口A想给接口B发送数据,并且A只知道B的IP地址,它必须首先查找B的物理地址,它发送一个含有B的IP地址的ARP广播请求B的物理地址,接口B收到该广播后,向A回应其物理地址。 注意,虽然所有接口都收到了信息,但只有B回应该请求,这保证了回应的正确且避免了过期的信息。要注意的是,当A和B不在同一网段时,A只向下一跳的路由器发送ARP请求,而不是直接向B发送。 接收到ARP分组后处理,注意发送者的对被存到接收ARP请求的主机的本地ARP表中,一般A想与B通信时,B可能也需要与A通信。 3、IP地址冲突 ARP产生的问题中最常见的是IP地址的冲突,这是由于两个不同的主机IP地址相同产生的,在任何互联的网络中,IP地址必须是唯一的。这时会收到两个ARP回应,分别指出了不同的硬件地址,这是严重的错误,没有简单的解决办法。 为了避免出现这类错误,当接口A初试化时,它发送一个含有其IP地址的ARP请求,如果没有收到回应,A就假定该IP地址没有被使用。我们假定接口B已经使用了该IP地址,那么B就发送一个ARP回应,A就可以知道该IP地址已被使用,它就不能再使用该IP地址,而是返回错误信息。这样又产生一个问题,假设主机C含有该IP地址的映射,是映射到B的硬件地址的,它收到接口A的ARP广播后,更新其ARP表使之指向A的硬件地址。为了解决这个错误,B再次发送一个ARP请求广播,这样主机C又更新其ARP表再次指向B的硬件地址。这时网络的状态又回到先前的状态,有可能C已经向A发送了应该发送给B的IP分组,这很不幸,但是因为IP提供的是无保证的传输,所以不会产生大的问题。 4、管理ARP缓存表 ARP缓存表是对的列表,根据IP地址索引。该表可以用命令arp来管理,其语法包括: 向表中添加静态表项 -- arp -s 从表中删除表项 -- arp -d 显示表项 -- arp -a ARP表中的动态表项(没有手动加入的表项)通常过一段时间自动删除,这段时间的长度由特定的TCP/IP实现决定。 5、静态ARP地址的使用 静态ARP地址的典型使用是网关协议BGP(Border Gateway Protocol),BGP是较新的协议,在逐渐地取代EGP。 5、ICMP重定向 ICMP通常不被看作路由协议,但是ICMP重定向却与路由协议的工作方式很类似,所以将在这里讨论一下。假设现在有上面所给的六个表项的路由表,分组被送往201.66.43.33,看看路由表,除了缺省路由外,这并不能匹配任何路由。静态路由将其通过路由器201.66.39.254发送(trip 1),但是,该路由器知道所有发向子网201.66.43.0的分组应该通过201.66.39.253,因此,它把分组转发到适当的路由器(trip 2)。但是如果主机直接把分组发到201.66.39.253就会提高效率(trip 3)。 因为路由器把分组从同一接口发回了分组,所以它知道有更好的路由,路由器可以通过ICMP重定向指示主机使用新的路由。虽然路由器知道所有发向201.66.43.0子网的分组应该通过201.66.39.253,它通常只发送特定的主机的ICMP重定向(此例中是201.66.43.33)。主机将在路由表中创建一个新的表项: 目的 掩码 网关 标志 接口 201.66.43.33 255.255.255.255 201.66.39.253 UGHD eth1 注意标志D,对所有由ICMP重定向创建的路由设置此标志。将来此类分组将通过新路由发送(trip 3)。 6、RIP RIP是一种简单的内部路由协议,已经存在很久,被广泛地实现(UNIX的routed就使用RIP)。它使用距离向量算法,所以其路由选择只是基于两点间的“跳(hop)”数,穿过一个路由器认为是一跳。主机和网关都可以运行RIP,但是主机只是接收信息,而并不发送。路由信息可以从指定网关请求,但通常是每隔30秒广播一次以保持正确性。RIP使用UDP通过端口520在主机和网关间通信。网关间传送的信息用于建立路由表,由RIP选定的路由总是具有距离目的跳数最少的。RIP版本1在简单、较小的网络中工作得不错,但是在较大的网络中,就出现一些问题,有些问题在RIP版本2中已纠正,但有些是由于其设计产生的限制。在下面的讨论中,适用于两种版本时简单称为RIP,RIP v1和RIP v2则指特定的版本。 RIP并没有任何链接质量的概念,所有的链路都被认为是相同的,低速的串行链路被认为与高速的光纤链路是同样的。RIP以最小的跳数来选择路由,因此当在下面两个路由中选择时: 100Mbps的光纤链路,路由器,然后是10Mbps的以太网 9600bps的串行链路 RIP将选择后者。RIP也没有链路流量等级的概念。例如对于两条以太网链路,其中一个很繁忙,另一个根本没有数据流,RIP可能会选择繁忙的那条链路。 RIP中的最大hop数是15,大于15则认为不可到达。因此在很大的自制系统中,hop数很可能超过15,使用RIP是很不现实的。RIP v1不支持子网,交换的信息中不含子网掩码,对给定路由确定子网掩码的方法各不相同,RIP v2则弥补了此缺点。RIP每隔30秒才进行信息更新,因此在大网中断链信息可能要花些时间才能传播开来,路由信息的稳定时间可能更长,并且在这段时间内可能产生路由环路。对此有一些解决办法,但这里不进行讨论。 可以看出,RIP是一个简单的路由协议,有一些限制,尤其在版本1中。不过,它常常是某些操作系统的唯一选择。
上一页 [1] [2] 文章录入:csh 责任编辑:csh |