Python分治法定义与应用实例详解

论坛 期权论坛 脚本     
niminba   2021-5-23 04:05   2321   0

本文实例讲述了Python分治法定义与应用。分享给大家供大家参考,具体如下:

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

题目1. 给定一个顺序表,编写一个求出其最大值的分治算法。

# 基本子算法(子问题规模小于等于 2 时)
def get_max(max_list):
  return max(max_list) # 这里偷个懒!
# 分治法 版本一
def solve(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,最终解决
    return get_max(init_list)
  # 分解(子问题规模为 2,最后一个可能为 1)
  temp_list=(init_list[i:i+2] for i in range(0, n, 2))
  # 分治,合并
  max_list = list(map(get_max, temp_list))
  # 递归(树)
  solve(max_list)
# 分治法 版本二
def solve2(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,解决
    return get_max(init_list)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治
  left_max, right_max = solve2(left_list), solve2(right_list)
  # 合并
  return get_max([left_max, right_max])
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 求最大值
  print(solve(test_list)) # 67
  print(solve2(test_list)) # 67

题目2. 给定一个顺序表,判断某个元素是否在其中。

# 子问题算法(子问题规模为 1)
def is_in_list(init_list, el):
  return [False, True][init_list[0] == el]
# 分治法
def solve(init_list, el):
  n = len(init_list)
  if n == 1: # 若问题规模等于 1,直接解决
    return is_in_list(init_list, el)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治,合并
  res = solve(left_list, el) or solve(right_list, el)
  return res
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 查找
  print(solve2(test_list, 45)) # True
  print(solve2(test_list, 5)) # False

题目3. 找出一组序列中的第 k 小的元素,要求线性时间

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 查找第 k 小的元素
def select(seq, k):
  # 分解
  lo, pi, hi = partition(seq)
  m = len(lo)
  if m == k:
    return pi        # 解决!
  elif m < k:
    return select(hi, k-m-1) # 递归(树),分治
  else:
    return select(lo, k)   # 递归(树),分治
if __name__ == '__main__':
  seq = [3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2]
  print(select(seq, 3)) #2
  print(select(seq, 5)) #2

题目4. 快速排序

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 快速排序
def quicksort(seq):
  # 若问题规模小于等于1,解决
  if len(seq) <= 1: return seq
  # 分解
  lo, pi, hi = partition(seq)
  # 递归(树),分治,合并
  return quicksort(lo) + [pi] + quicksort(hi)
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(quicksort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

题目5. 合并排序(二分排序)

# 合并排序
def mer{zh[z~h{3
分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:1060120
帖子:212021
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP