本文实例讲述了Python pandas自定义函数的使用方法。分享给大家供大家参考,具体如下:
自定义函数的使用
import numpy as np
import pandas as pd
# todo 将自定义的函数作用到dataframe的行和列 或者Serise的行上
ser1 = pd.Series(np.random.randint(-10,10,5),index=list('abcde'))
df1 = pd.DataFrame(np.random.randint(-10,10,(4,5)),index=list('ACBD'),columns=list('abcde'))
# todo 定义一个函数,求其和,绝对值,最大值减最小值的差值,平方
def func(x):
# print(x)
print('--------------')
num= np.max(x)-np.min(x)
a = abs(x)
b= x**2
# return num
# return a
return b
print(ser1.apply(func))
def func1(x):
# print(x)
print('--------------')
# num= np.max(x)-np.min(x)
a = abs(x)
b= x**2
# return num
# return a
return b
print(df1.apply(func1,axis = 1))
# todo 使用匿名函数实现----求其和,绝对值,最大值减最小值的差值,
print(df1.apply(lambda x:x**2,axis=1))
print('------')
print(df1.apply(lambda x:np.max(x)-np.min(x),axis=1))
print('---------')
print(df1.apply(lambda x:abs(x),axis=1))
# applymap的使用
# todo 使用applymap 因为applymap作用在每个元素上,所以不需要指定axis
print(df1.applymap(lambda x:x**2))
print('---------')
print(df1.applymap(lambda x:abs(x)))
排序
import numpy as np
import pandas as pd
ser1 = pd.Series(np.random.randint(-10,10,10),index=list('acbdfeghji'))
df1 = pd.DataFrame(np.random.randint(-10,10,(4,5)),index=list('ADBC'),columns=list('abcde'))
print(ser1)
print(df1)
print('------------------')
# todo 按照索引排序 sort_index()
# print(ser1.sort_index())#默认升序
# print(ser1.sort_index(ascending=False))#指定ascending为降序
# print(df1.sort_index())#默认行升序
# print(df1.sort_index(ascending=False))#行降序
# print(df1.sort_index(axis=1))#列升序
# print(df1.sort_index(ascending=False,axis=1))#列降序
# todo 按照值排序
print(ser1.sort_values())#默认升序
print(ser1.sort_values(ascending=False))#指定ascending为降序
# dataframe 对象比较复杂,需要按照哪一列来进行排序
print(df1.sort_values(by='a'))#默认列升序
print(df1.sort_values(by='a',ascending=False))#列降序
print(df1.sort_values(by='A',axis=1))#行升序
print(df1.sort_values(by='A',ascending=False,axis=1))#行降序
数据重构
import numpy as np
import pandas as pd
ser1 = pd.Series(np.random.randint(-10,10,10),index=[list('aabbccddee'),[1,2,1,2,1,2,1,2,1,2]])
df1 = pd.DataFrame(np.random.randint(-10,10,(4,5)),index=list('aabb'),columns=list('abcde'))
print(ser1)
print(df1)
print('-----------------------')
# todo 外层索引取值
print(ser1['a'])#获取单个外层索引
print(ser1['a':'e'])#获取多个外层
# todo 内层索引取值
print(ser1[:,1])
# todo 指定外层,内层索引取值
print(ser1['a',1])
# todo 交换分层-----swaplevel()
print(ser1.swaplevel())
# todo 将Sterise转为dataframe对象外层索引作为行索引,内层索引作为列索引
print(ser1.unstack())
# todo 将dataframe转为Sterise对象行索引作为外层索引行索引,列索引作为内层索引列
print(df1.stack())
# todo dataframe 转字典
print(df1.to_dict())
# todo dataframe 转csv文件
print(df1.to_csv())
数据连接操作
import numpy as np
import pandas as pd
df1 = pd.DataFrame(
{'key1':list('abcdefgh'),'data1':np.random.randint(-5,10,8)}
)
df2 = pd.DataFrame(
{'key2':list('defgh'),'data2':np.random.randint(-5,10,5)}
)
print(df1)
print(df2)
print('--------------------------')
# todo 链接
# print(pd.merge(df1,df2,on='key'))# key相同时 通过key连接df1,df2
# print(pd.merge(df1,df2))#不指定,连接df1,df2默认通过相同的列来连接
# print(pd.merge(df1,df2,on=data1))#data1相同时 通过data1连接df1,df2
#todo 交集
print(pd.merge(df1,df2,left_on='key1',right_on='key2'))
#todo 并集
print(pd.merge(df1,df2,how='outer',left_on='key1',right_on='key2'))
#todo 左连接
print(pd.merge(df1,df2,how='left',left_on='key1',right_on='key2'))
#todo 右连接
print(pd.merge(df1,df2,how='right',left_on='key1',right_on='key2'))
# todo 通过行索引来指定
print(pd.merge(df1,df2,left_on='data1',right_index=True))#left_on指定左表的列索引为外健,right_index作业为右表的行索引作为外检
print(pd.merge(df1,df2,left_index=True,right_index=True))#left_index,right_index,默认的情况下,将两张表按照航索引的相同情况,合成一条数据
print(pd.merge(df1,df2,how='left',left_index=True,right_index=True))# 按照行进行连接,也能指定链接方式
注意点:
1.how = inner,默认的,内连接,多表的交集
2.how = outer,外连接,多表的并集
3.how = left,指定为左连接,展示左表的完整数据,不管右表有没有匹配
4.how = right,指定为右连接,展示右表的完整数据,不管左表有没有匹配
数据的合并
import numpy as np
import pandas as pd
# todo np数组的合并 np.concatenate() ,参与合并的数组,纬度大小曖rorZ&/r'&* |