马克维茨投资组合理论的基本假设为:(1)投资者是风险规避的,追求期望效用最大化;(2)投资者根据收益率的期望值与方差来选择投资组合;(3)所有投资者处于同一单期投资期。马克维茨提出了以期望收益及其方差(E,δ2)确定有效投资组合。
以期望收益E来衡量证券收益,以收益的方差δ2表示投资风险。资产组合的总收益用各个资产预期收益的加权平均值表示,组合资产的风险用收益的方差或标准差表示,则马克维茨优化模型如下:
式中:rp——组合收益;
ri、rj——第i种、第j种资产的收益;
wi、wj——资产i和资产j在组合中的权重;
δ2(rp)——组合收益的方差即组合的总体风险;
cov(r,rj)——两种资产之间的协方差。
马克维茨模型是以资产权重为变量的二次规划问题,采用微分中的拉格朗日方法求解,在限制条件下,使得组合风险铲δ2(rp)最小时的最优的投资比例Wi。从经济学的角度分析,就是说投资者预先确定一个期望收益率,然后通过确定投资组合中每种资产的权重,使其总体投资风险最小,所以在不同的期望收益水平下,得到相应的使方差最小的资产组合解,这些解构成了最小方差组合,也就是我们通常所说的有效组合。有效组合的收益率期望和相应的最小方差之间所形成的曲线,就是有效组合投资的前沿。投资者根据自身的收益目标和风险偏好,在有效组合前沿上选择最优的投资组合方案。
根据马克维茨模型,构建投资组合的合理目标是在给定的风险水平下,形成具有最高收益率的投资组合,即有效投资组合。此外,马克维茨模型为实现最有效目标投资组合的构建提供了最优化的过程,这种最优化的过程被广泛地应用于保险投资组合管理中。
马克维茨投资组合理论的基本思路是:(1)投资者确定投资组合中合适的资产;(2)分析这些资产在持有期间的预期收益和风险;(3)建立可供选择的证券有效集;(4)结合具体的投资目标,最终确定最优证券组合。
[编辑]资本资产定价模型及其扩展[2]
马柯维茨投资组合理论之后,Sharpe(1964),Lintner(1965),Mossin(1966)分别提出了各自的资本资产定价模型(CAPM)。这些模型是在不确定条件下探讨资产定价的理论,对投资实践具有重要的指导意义。
资本资产定价模型提出之后,研究者进一步扩展了该研究。
Jensen Michael(1969)提出以CAPM中的证券市场线为基准来分析投资组合绩效的非常规收益率资本资产定价模型,但由于在非系统风险不能完全剔除的情况下,该模型对投资组合绩效的评价结果不如CAPM的评价结果,因此该模型在实际中应用不多。
Brennan(1970)提出了考虑税率对证券投资报酬影响的资本资产定价模型;Vasicek,(1971),Black(1972)分别研究了不存在无风险借贷时的资本资产定价模型;Mayers(1972)提出了考虑存在退休金、社会保险等非市场化资产情况下的资产定价模型的建立;Merton(1973)提出了多因素的ICAPM模型 (Intertemporal CAPM),为后来的长期投资理论奠定了基础。E.Linderberg(976、1979)研究了存在价格影响者时的资本市场均衡和投资者的组合选择问题。结果发现所有投资者(包括价格影响者)都持有市场组合和无风险资产的某个组合,故仍可得到形式简单的CAPM,只不过此时的单位风险价格低于所有投资者都是价格接收者时的单位风险价格。他还证明了通过兼并或合伙,个体或机构投资者可以增加他们的效用,这就是大型金融机构存在的原因之一。
Sharpe(1970),E.Fama(1976),J.Lintler(1970),N.J.Gonedes(1976)等分别研究了投资者对资产将来的期望收益、收益的方差、协方差期望不一致时资本市场的均衡,他们得到了形式于标准CAPM类似的CAPM。
由于资本资产定价模型的假设条件过于严格,使其在应用中受到一定局限。因此,对于CAPM的突破成为必然。
Stephen.A.Ross(1976)提出了套利定价理论(APT)。APT不需要像CAPM那样作出很强的假定,从而突破性地发展了CAPM。
Black,Scholes(1973)推导出期权定价公式,即B一S模型;Merton(1973)对该定价公式发展和深化。针对B—S模型假定股票价格满足几何--布朗运动在大多数情况下不符合实际价格变化的问题,Scholes,Ross(1976)在假定股票价格为对数泊松发布情况下推导出了纯跳空期权定价模型(Pure Jump Model);Merton(1976)提出了扩散--跳空方程(Diffusion-Jump Model);格利斯特和李(1984)研究了基础证券交易成本对期权价值的影响:当存在交易成本时,连续时间无套利定价会因为高昂的交易成本而无法实现;Merton(1990)运用了离散时间模型提出了交易成本与基础证券价格成比例的单阶段期权定价公式;波耶勒和沃尔斯特(1992)将Merton 的方法推广到了多阶段情形。
拉马斯瓦米,桑达瑞森(1985);Brenner;科塔顿,萨布拉曼·彦(1985)以及贝尔和托罗斯(1986)的研究指出,美式期货期权在利率为正的条件下比美式现货期权更易于执行;Lieu(1990)应用连续时间定价方法推出了期货纯期权的定价公式;陈,斯科特(1993)进一步研究指出,即使利率是随机的,期货纯期权价值也不受利率的影响;Chaudhurg,Wei(1994)研究了常规期货期权与纯期权的价值关系,指出期货纯期权的价值高于美式期货期权的价值。Harrison,Krep(1979)发展了证券定价的轶理论(theory of martingale pricing),该理论目前仍是金融研究的前沿课题。
|