研究衍生品的时候为什么用几何布朗运动来模拟股票价格的运行轨迹?

论坛 期权论坛 期权     
哟喂   2018-10-17 22:48   9225   10
漂移率为什么可以假设为不变?难道随着价格上升不存在类似边际报酬递减的规律?
分享到 :
0 人收藏

10 个回复

正序浏览
11#
杨华明  3级会员 | 2018-10-17 22:48:47 发帖IP地址来自
我觉得有点走火入魔的感觉。
索罗斯的反身性,应该是目前更贴合实际的观点。
10#
Miss Lau  3级会员 | 2018-10-17 22:48:46 发帖IP地址来自
完全没听过,不知道网友学的是什么版本的教材。股票是几何布朗运动?没钱你倒弄个股票布朗运动给我们股民看看呢?这种假设你们不觉得不对劲吗?
9#
蔡成杰  4级常客 | 2018-10-17 22:48:45 发帖IP地址来自
本答案不具有普适性,只限于读过Hull“Options.Futures.and.Other.Derivatives.”这本书的读者。

要肯定题主的是,题主你想的是对的哦,漂移率确实会变。题主有没有想过,到底漂移率是什么?
Hull 的书里(chapter 14.3)有讲到,并不是漂移率不变(事实上漂移率会随股票价格S变化而变化),真正不变的是收益率期望





如果不懂广义维纳过程是什么的话,把Hull的书里第十四章前面两个小节补上就知道了。


14-7里的意思是
(股票价格的变化/股票价格) 与两个因素有关,一个是确定项
, 另一个是随机项
,也就是说,股票价格的变化/股票价格除了有一个确定性的趋势,还要加上一个随机项波动,所以用几何布朗运动来描述股票价格的变化是自然的,当然随机项为什么是
还是要归结到维纳过程,所以还是把Hull的书里第十四章前面两个小节补上吧。括弧微笑
8#
匿名用户   | 2018-10-17 22:48:44 发帖IP地址来自
提示: 作者被禁止或删除 内容自动屏蔽
7#
Yaofei xu  2级吧友 | 2018-10-17 22:48:43 发帖IP地址来自
在Q测度下,几何布朗运动加上漂移项是最简单的,可以拟合资产运行轨迹的随机微分方程。布朗运动又有正态分布的特点,股票收益率接近正态分布。

偏移项、可以加jump process,来贴切现实。不过基于风险中性测度,以及这个最初的随机微分方程,不加跳跃过程会更popular。
6#
匿名用户   | 2018-10-17 22:48:42 发帖IP地址来自
提示: 作者被禁止或删除 内容自动屏蔽
5#
万能定理  2级吧友 | 2018-10-17 22:48:41 发帖IP地址来自
这就像股票价格中的随机漫步理论,理论性非常强,我个人不太喜欢这类理论,它纯粹只给出价格高低的出现概率和范围,实用性不高。历史是可以重演的,如果不可以那技术分析的意义在哪里?市场如果是强势有效,哪怕半强势有效,那么用随机数列来研究价格都没有太大意义。
4#
伊芸  5级知名 | 2018-10-17 22:48:40 发帖IP地址来自
我反正不用,几何布朗运动基于量子理论属于处于无限加速的粒子运动。所以不会有边际报酬递减。一个无论什么股价买入,期望收益率都不变。很好理解,韭菜无限割当然无限加速。这套理论确实荒诞得可笑,既然有无穷远处收益率一定大于存款利率,还衍生品定价个毛线,永久持股就好了。无穷远处波动还无限大,无穷远处的股价比正无穷还要无穷。
我非常支持伽马定价,波动既影响股价,又影响收益率,定价形式比几何布朗更简单。
3#
Thomas  4级常客 | 2018-10-17 22:48:39 发帖IP地址来自
Though I am in a quant finance program, I have decided not to pursue quant jobs as my career. With all due respect, the more I learn about finance, including quant fin, the more I believe it's not the core of the financial markets, though they are extremely crucial in derivative pricing, trading and risk management. It's all a matter of choice, but I reckon now that I've learnt a lot about Brownian motions stuffs, it seems like a waste if I don't share them with people. So bear with me and let me give you my understandings.
Intuitively you should find it easy to understand why stock price S(t) follows a geometric Brownian motion. By Ito's lemma, you will get the stochastic differential equation of the GBM S(t) to become dS(t)/S(t) = ln[S(t)] = stock return = alpha * dt + sigma * dW(t). (Note that you can ONLY get this stuff if stock price follows GBM. You wouldn't pay too many efforts to prove it.) Well, that "alpha" is nothing more than the average return of the stock (here, a stock's average return is alpha, not risk-free rate. Save risk-free rate for the purpose of pricing a stock derivative using Monte-Carlo). You can think of it as the compound return that you consistently earn from a stock (well, only fabulous stocks can give you this kind of return, lol. If you buy Huishan Dairy, then forget about any Brownian motion). The sigma part is the only uncertain part in a stock price process, because it has a Wiener process W(t), which follows N(0, t). You will find it make sense if you think about it: on average, the stock return will just be the average return alpha * dt, because E[stock return] = E[dS(t)/S(t)] = alpha * dt. However, the stock returns are volatile and moving around all over the place when it is traded; thus, those smart finance guys just said "why don't we add some random favor in it and make the stock returns to follow some normal distribution?" So wham! We have the sigma * dW(t) part, indicating that the stock is moving around the average returns. It also illustrates the so-called "mean reversion" phenomenon. You might wonder if this crazy model makes any sense in real world. Trust me, it indeed makes some sense.
There are some great stocks in the market that look exactly like a geometric Brownian motion. For example, the stock price of Tencent.
It's a pity that I can't upload any picture here. You can search for Tencent's stock price diagram and click "Max", and it will blow your mind: it looks exactly like geometric Brownian motion.
Some people argue that the model is wrong. Of course, all models are wrong, but some are useful :)
2#
斯图皮徳·凯丁  4级常客 | 2018-10-17 22:48:38 发帖IP地址来自
嘻嘻,那是因为你刚踏进门槛,接触到的期权类型还不够丰富。

事情是这样的,一般大家刚开始学期权定价的时候,主要目的就是为了给vanilla call来定个价,对于这种payoff相对来说非常光滑,又不依赖路径的,BS完全足够了呀,这个时候给你来个levy意义也不大呀,一般来说你会发现他们定价算出来的期权价格差别并不大。而坏处是非常显然的,门槛高就不说了,模型的复杂性会非常阻碍初学者对于对冲思想的理解。

那么问题又来了,什么时候GBM就够了,什么时候需要更复杂的模型?

我们知道影响期权价格的主要是标的资产价格分布的形状而不是位置(因为测度变换,也就是对冲),而GBM最大的问题在于对尾部风险估计的严重不足。这会导致这样一个问题:对于deep out of money put,它的价值在GBM下总是接近0的,但是我们知道由于对极端情况的担忧,他的市场价格会比0大一些。这会为做期权的人带来一个困扰,因为对于OTC期权,PnL总是通过簿记来体现,那如果对book的估值采用GBM,deep out of money put的买方相当于买回来了一个价值为0的东西,一开始就亏钱了呀。除非对PnL无感,否则一般人不会这么干。这个情况也就会倒逼大家用更复杂的模型来使得自己的book看起来更“值钱”。

事实上,各类vol smile model也就是为了描述更极端的市场情况,因为GBM在这些地方高度不可靠。对于一些期权,他们的价格对极端情况非常敏感,比如double no touch,crash put,不同模型下期权价格可以差20%
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:
帖子:
精华:
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP