一致性hash算法虚拟节点_面试又被问到一致性 Hash 算法?这样回答秒杀面试官...

论坛 期权论坛 脚本     
已经匿名di用户   2022-7-2 21:49   2943   0
3622ea5a24ccc4a6f53c88cda29f02d6.png

编程改变世界

数据分片

先让我们看一个例子吧

我们经常会用 Redis 做缓存,把一些数据放在上面,以减少数据的压力。

当数据量少,访问压力不大的时候,通常一台Redis就能搞定,为了高可用,弄个主从也就足够了;

当数据量变大,并发量也增加的时候,把全部的缓存数据放在一台机器上就有些吃力了,毕竟一台机器的资源是有限的,通常我们会搭建集群环境,让数据尽量平均的放到每一台 Redis 中,比如我们的集群中有 4 台Redis。

那么如何把数据尽量平均地放到这 4 台Redis中呢?最简单的就是取模算法:

hash( key ) % N,N 为 Redis 的数量,在这里 N = 4 ;

fa7a2f5ad4f2bec71b4670b9db25207b.png

数据分片

看起来非常得美好,因为依靠这样的方法,我们可以让数据平均存储到 4 台 Redis 中,当有新的请求过来的时候,我们也可以定位数据会在哪台 Redis 中,这样可以精确地查询到缓存数据。

数据分片会遇到的问题

但是 4 台 Redis 不够了,需要再增加 4 台 Redis ;

那么这个求余算法就会变成:hash( key ) % 8 ;

df8e7a2a881077ef4e6778648e22a878.png

分片数量改变


那么可以想象一下,当前大部分缓存的位置都会是错误的,极端情况下,就会造成 缓存雪崩。

一致性 Hash 算法

一致性 Hash 算法可以很好地解决这个问题,它的大概过程是这样的:

把 0 作为起点,2^32-1 作为终点,画一条直线,再把起点和终点重合,直线变成一个圆,方向是顺时针从小到大。0 的右侧第一个点是 1 ,然后是 2 ,以此类推。

对三台服务器的 IP 或其他关键字进行 hash 后对 2^32 取模,这样势必能落在这个圈上的某个位置,记为 Node1、Node2、Node3。

78eeea89c0707be18684fe19ad13d3f3.png

先画一个圈圈

然后对数据 key 进行相同的操作,势必也会落在圈上的某个位置;然后顺时针行走,可以找到某一个 Node,这就是这个 key 要储存的服务器。

060783fd02741562c12a056eed125e30.png

数据顺时针找到对应的 Redis 节点


如果增加一台服务器或者删除一台服务器,只会影响 部分数据。

cfe76c445e2b59e9958df10d0c737635.png

节点数量改变,影响部分数据

但如果节点太少或分布不均匀的时候,容易造成 数据倾斜,也就是大部分数据会集中在某一台服务器上。

400d0ecb8a0357625af53ac3458db0e6.png

数据倾斜

为了解决数据倾斜问题,一致性 Hash 算法提出了【虚拟节点】,会对每一个服务节点计算多个哈希,然后放到圈上的不同位置。

cbad223f66a40b47b30a2afcb18a3c3c.png

虚拟节点

当然我们也可以发现,一致性 Hash 算法,也只是解决大部分数据的问题。

我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注;关注我后,可私信发送数字【1】,获取学习资料。

d7b63299b793b6906bf5c06038ac31b8.png
分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:81
帖子:4969
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP