PyTorch C++ 训练 Xor Gate

论坛 期权论坛 编程之家     
选择匿名的用户   2021-6-2 20:46   2052   0

使用一个简单的fully-connected NN来训练一个Xor Gate。

主要目的是熟悉使用PyTorch C++ 的API。

#include <torch/torch.h>
#include <iostream>
using namespace torch::indexing;

struct Xor_net : torch::nn::Module
{
  Xor_net()
  {
    fc1 = register_module("fc1", torch::nn::Linear(2, 16));
    fc2 = register_module("fc2", torch::nn::Linear(16, 1));
  }
  torch::Tensor forward(torch::Tensor x)
  {
    x = torch::relu(fc1->forward(x));
    x = torch::relu(fc2->forward(x));
    return x;
  }
  torch::nn::Linear fc1{nullptr}, fc2{nullptr};
};

int main()
{
  torch::manual_seed(0);
  Xor_net a;
  float data[] = {1, 1, 0,
                  1, 0, 1,
                  0, 1, 1,
                  0, 0, 0};
  torch::Tensor training_data = torch::from_blob(data, {4, 3});
  torch::optim::SGD optimizer(a.parameters(), /*lr=*/0.01);
  torch::Tensor train_x = training_data.index({Slice(), Slice(None, 2)});
  torch::Tensor train_y = training_data.index({Slice(), Slice(2, 3)});
  for (int i = 0; i <= 10000; ++i)
  {
    optimizer.zero_grad();
    torch::Tensor prediction = a.forward(train_x);
    torch::Tensor loss = torch::nn::functional::mse_loss(prediction, train_y);
    loss.backward();
    optimizer.step();
    if (i % 1000 == 0)
    {
      std::cout << "loss at iter " << i << ": " << loss.item<float>() << std::endl;
    }
  }
  {
    std::cout << "final learning result: " << std::endl;
    torch::NoGradGuard no_grad;
    std::cout << a.forward(train_x) << std::endl;
  }
}
分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:3875789
帖子:775174
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP