环境: tensorflow2.x, 一定要使用linux系统,后期转换模型windows会出现bug
API解析
网址:https://tensorflow.google.cn/api_docs/python/tf/lite
API
功能
class Interpreter
推理TensorFlow Lite模型
class TFLiteConverter
将TensorFlow模型转换为TensorFlow Lite模型
class Optimize
定义tflite图使用此API的优化
class OpsSet
TFLite模型的操作集
常用的就这4个类,常用方法介绍:
# model_path:TF-Lite Flatbuffer文件的路径
# model_content:模型的内容
tf.lite.Interpreter(
model_path=None, model_content=None, experimental_delegates=None
)
allocate_tensors() # 加载所有的tensor
get_input_details() # 获取模型输入详细信息
get_output_details() # 获取模型输出详细信息
# 获取输入张量的值(获取副本),该值可以从get_output_details中的“索引”字段中获得
get_tensor(
tensor_index
)
get_tensor_details() # 返回值:包含张量信息的字典列表
invoke() # 进行推理, 在调用它之前,请确保设置输入大小,分配张量和填充值
# tensor_index:要设置的张量的张量索引。该值可以从get_input_details中的“索引”字段中获得
# value:要设置的张量值
set_tensor(
tensor_index, value
)
# Converting a SavedModel to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()
# Converting a tf.Keras model to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Converting ConcreteFunctions to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_concrete_functions([func])
tflite_model = converter.convert()
tf.lite.Optimize
类变量
DEFAULT
OPTIMIZE_FOR_LATENCY
OPTIMIZE_FOR_SIZE
完整例子:
1. 训练一个模型用于后面转换TFLite模型与推理
import tensorflow as tf
from tensorflow import keras
# 读取数据
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = tf.expand_dims(x_train, 3)
y_train = keras.utils.to_categorical(y_train, num_classes=10)
datasets = tf.data.Dataset.from_tensor_slices((x_train, y_train))
datasets = datasets.repeat(1).batch(10)
# 定义模型
img = keras.Input(shape=[28, 28, 1])
x = keras.layers.Conv2D(filters=64, kernel_size=4, strides=1, padding='SAME', activation='relu')(img)
x = keras.layers.AveragePooling2D(pool_size=2, strides=2, padding='SAME')(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.Dropout(0.15)(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(512, activation='relu')(x)
y_pred = keras.layers.Dense(10, activation='softmax')(x)
model = keras.Model(inputs=img, outputs=y_pred)
model.compile(optimizer=keras.optimizers.Adam(0.01),
loss=keras.losses.categorical_crossentropy,
metrics=['AUC', 'accuracy'])
model.fit(datasets, epochs=1)
model.save('./model.h5')
2. 转换模型
import tensorflow as tf
from tensorflow import keras
model = tf.keras.models.load_model("./model.h5")
model.summary()
converter = tf.lite.TFLiteConverter.from_keras_model(model) # 生成转化器
tflite_model = converter.convert() # 进行转换
open('./converted_model.tflite', 'wb').write(tflite_model) # 写入
3. 推理
import tensorflow as tf
from tensorflow import keras
import numpy as np
interpreter = tf.lite.Interpreter(model_path='./converted_model.tflite') # 读入并生成interpreter
interpreter.allocate_tensors() # 加载所有的张量
input_details = interpreter.get_input_details() # 获取输入的信息
output_details = interpreter.get_output_details() # 获取输出的信息
# 指定随机数进行预测
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
# 指定输入数据
interpreter.set_tensor(input_details[0]['index'], input_data)
# 调用模型进行推理
interpreter.invoke()
# 根据tensor索引取出推理的结果
tflite_result = interpreter.get_tensor(output_details[0]['index'])