本文实例讲述了python threading和multiprocessing模块基本用法。分享给大家供大家参考,具体如下:
前言
这两天为了做一个小项目,研究了一下python的并发编程,所谓并发无非多线程和多进程,最初找到的是threading模块,因为印象中线程“轻量...”,“切换快...”,“可共享进程资源...”等等,但是没想到这里水很深,进而找到了更好的替代品multiprocessing模块。下面会讲一些使用中的经验。
后面出现的代码都在ubuntu10.04 + python2.6.5的环境下测试通过。
一、使用threading模块创建线程
1、三种线程创建方式
(1)传入一个函数
这种方式是最基本的,即调用threading中的Thread类的构造函数,然后指定参数target=func,再使用返回的Thread的实例调用start() 方法,即开始运行该线程,该线程将执行函数func,当然,如果func需要参数,可以在Thread的构造函数中传入参数args=(...)。示例代码如下:
#!/usr/bin/python
#-*-coding:utf-8-*-
import threading
#用于线程执行的函数
def counter(n):
cnt = 0;
for i in xrange(n):
for j in xrange(i):
cnt += j;
print cnt;
if __name__ == '__main__':
#初始化一个线程对象,传入函数counter,及其参数1000
th = threading.Thread(target=counter, args=(1000,));
#启动线程
th.start();
#主线程阻塞等待子线程结束
th.join();
这段代码很直观,counter函数是一个很无聊的双重循环,需要注意的是th.join() 这句,这句的意思是主线程将自我阻塞,然后等待th表示的线程执行完毕再结束,如果没有这句,运行代码会立即结束。join的意思比较晦涩,其实将这句理解成这样会好理解些“while th.is_alive(): time.sleep(1)”。虽然意思相同,但是后面将看到,使用join也有陷阱。
(2)传入一个可调用的对象
许多的python 对象都是我们所说的可调用的,即是任何能通过函数操作符“()”来调用的对象(见《python核心编程》第14章)。类的对象也是可以调用的,当被调用时会自动调用对象的内建方法__call__() ,因此这种新建线程的方法就是给线程指定一个__call__方法被重载了的对象。示例代码如下:
#!/usr/bin/python
#-*-coding:utf-8-*-
import threading
#可调用的类
class Callable(object):
def __init__(self, func, args):
self.func = func;
self.args = args;
def __call__(self):
apply(self.func, self.args);
#用于线程执行的函数
def counter(n):
cnt = 0;
for i in xrange(n):
for j in xrange(i):
cnt += j;
print cnt;
if __name__ == '__main__':
#初始化一个线程对象,传入可调用的Callable对象,并用函数counter及其参数1000初始化这个对象
th = threading.Thread(target=Callable(counter, (1000,)));
#启动线程
th.start();
#主线程阻塞等待子线程结束
th.join();
这个例子关键的一句是apply(self.func, self.args); 这里使用初始化时传入的函数对象及其参数来进行一次调用。
(3)继承Thread类
这种方式通过继承Thread类,并重载其run方法,来实现自定义的线程行为,示例代码如下:
#!/usr/bin/python
#-*-coding:utf-8-*-
import threading, time, random
def counter():
cnt = 0;
for i in xrange(10000):
for j in xrange(i):
cnt += j;
class SubThread(threading.Thread):
def __init__(self, name):
threading.Thread.__init__(self, name=name);
def run(self):
i = 0;
while i < 4:
print self.name,'counting...\n';
counter();
print self.name,'finish\n';
i += 1;
if __name__ == '__main__':
th = SubThread('thread-1');
th.start();
th.join();
print 'all done';
这个例子定义了一个SubThread类,它继承了Thread类,并重载了run方法,在方法中调用counter4次并打印一些信息,可以看到这种方式比较直观。在构造函数中要记得先调用父类的构造函数进行初始化。
2、python多线程的限制
python多线程有个讨厌的限制,全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不是“并行”。手册上的解释是为了保证对象模型的正确性!这个锁造成的困扰是如果有一个计算密集型的线程占着cpu,其他的线程都得等着....,试想你的多个线程中有这么一个线程,得多悲剧,多线程生生被搞成串行;当然这个/:RVjv4(4(4(4)E4)5A}}|5}}|M%QI4>c?/R:"/R""R/^ǒj&n>>c2'K?b7"AWT4(М蜱lНtg>c?k~C/>sRw(A%蜱
1"oC/(Eb"\4(ǒ(B*,4(/vr'>(
Р/R"RKB;~k/v:'7vr'/jv|4(
РMQ}}|M}}|4(lНt耀~jsw>c?(:"b"\4(РСЁ蜱RK'j,4(+R(Р4)Q}}|}}|4(lНtЁРРР4)}}}|}}}|B*C(4(4(rΣ?jrZ5jZWB;'B:vR/'/v7vjjfbǖr/b{?76W6'k/S^BgRg+Sg3jSh屔輽屔輽4(屔е4()/,4+),4(nknj>~r/rgc(нMх}/N7L/(нMх}V6z_Vg,/(нMх}*L/(нMх}_N7(нMх}^g,/(нMх}53V6/^Vg,/>+(нMх}V6N74(rorZ&/r'&* |