金融学有必要读 PhD 吗?

论坛 期权论坛 期权     
匿名用户   2018-10-17 22:48   3454   7
提示: 作者被禁止或删除 内容自动屏蔽
分享到 :
0 人收藏

7 个回复

倒序浏览
2#
易小星  1级新秀 | 2018-10-17 22:48:08 发帖IP地址来自
之前在QuantNet上看过一篇文章,讲金融工程需不需要读PhD,和题主的题目其实是类似的,我翻译了一下附上吧:

The Value of a PhD and MFE Degree
Since writing for this blog in January about the HFT/algo job market, I’ve received many inquiries from students asking about the “requirements” for quant jobs on Wall Street. “Do I need a PhD?” is a frequent question. Each time I receive one of these inquiries, I struggle with the answer. My instinct is no. But when I look at who is working in these jobs, I do see a predominance of PhD’s in the top positions. PhD’s in mathematics, physics, operations research, EE, etc. are common in the quant community. So it’s tempting to tell students that a PhD is helpful, but it feels like the wrong answer.

自从写了有关高频算法交易的就业市场的博客后,我收到了很多学生的询问,他们问我华尔街的“宽客”工作要求。其中一个常见问题就是“我需要PhD学位么?”每次收到这样的问题,我都要思躇良久。我的本能会说不,但是当我着眼于宽客岗位上的人时,的确会发现PhD学位在顶部职位的显著优势。在宽客群体中,拥有数学、物理、运筹、电子工程等专业的PhD学位是很普遍的。因此,答案倾向于告诉学生PhD是有帮助的,但是这个答案感觉起来又是错误的。

In my gut I know that the people getting these jobs are not getting offers because they have extra letters after their name. The people in these positions are there because they have proved over their academic and professional lives that they are:

我的直觉告诉我,得到宽客工作的人不是因为他们的名字后多了什么学位头衔,而是因为他们在学术和职业生涯中证明了他们具有以下的品质:

List 1
  • Very smart
  • Quantitative thinkers
  • Good at figuring things out with minimal guidance
  • Dedicated
非常聪明;量化思维者;善于在最少的指导下解决问题;专注

But the above is a generic list of attributes for hiring into just about any job. So what is it that makes someone hirable as a quant? The list isn’t long:

但是以上这些特征适用于任何工作。究竟什么特征才能让人胜任宽客工作呢?这份特征的名单也不长:

List 2
  • Education in advanced math (stochastic calculus, statistics, probability, etc.)
  • Good software development skills
  • Good data analysis skills
具备高级的数学方面教育(例如随机微积分,统计学,概率论等);擅长软件开发;优良的数据分析能力

Okay, now combine the two lists, and you have the list of qualifications for a quant.

结合这两份名单,你就可以知道成为宽客的必要条件了。

So, back to the question of whether to get a PhD. Should I get a PhD?, asks one student who is angling for a career in quantitative finance. Will it help me? Is it necessary? No, it’s definitely not necessary. Will it help? Empirically, it seems to help. But does it? I’ve finally come to clarity on the subject with the help of a conversation today with the director of a quant group supporting credit trading for a major investment bank. Of the two lists above, the important qualifications are on the first list. This list has nothing to do with your education. Your success in any field depends on the first list. The 2nd list consists of skills, skills that can come from your education or experience. They are enabling skills, but they are not dictators of success. All career success comes from differentiating oneself with respect to the elements on the first list. You can get a PhD, spend the money and the time, but if you don’t differentiate yourself in the fundamental elements of success, the PhD won’t help.

回到要不要拿到PhD学位的问题。PhD是必需的么?肯定不是。PhD有帮助么?经验上来看,似乎是有帮助,但果真如此么?我和一个负责投行信用交易支持的宽客组主管聊了这个问题,最终我有了清晰的答案。在上面两个名单中,更重要的是第一个名单里面的品质特征。这份名单与你的教育无关,而你在任何领域取得成功都依赖于这份名单。第二份名单都是些技能,而技能来自于你的教育和经历,它们能够让你有能力胜任工作,但是却不是成功的缔造者。所有的职业成功都依赖于第一份名单的因素。你可以花费时间和金钱去读PhD,但是如果你不具备成功的根本因素,PhD学位也帮不了你。

So why are there so many PhD’s in quantitative roles, anyway? I think the answer is pretty obvious. Very smart people with quantitative instincts are drawn to the PhD path. Later they find that they are well suited to a career in finance. They satisfy both lists and hence are successful in quantitative roles in finance. Almost without exception, these are individuals who pursued a PhD based on their interests and passions (EE, Physics, Applied Math, etc.), not people who pursued a PhD as a means to a job in finance. QED: A PhD is not a requirement for a career as a quant in finance.

那为什么宽客中有这么多PhD呢?我觉得答案很明显。非常聪明而且有量化直觉的人自身向往去读PhD。然后他们发现,他们非常适合在金融业工作。他们同时满足上面两个名单,因此才会在量化金融领域取得成功。几乎毫无例外地,这些人读PhD是因为兴趣和热情,而不是因为想把PhD当做进入金融业的手段。证毕:PhD学位不是从事金融宽客的必需品。

The MFE

I feel this article isn’t complete without addressing the MFE degree. The MFE provides students with the fundamental skills utilized in quantitative jobs. If you can afford it, it’s an easy way to satisfy List 2. However, it’s by no means a ticket to success in quantitative finance. I’ll explore the MFE further in my next post, “The MFE, Is it a Contra-indicator?”

我觉得如果不谈一下金融工程硕士学位,这篇文章就不完整。金工硕士学位可以提供给学生量化工作中要用到的基本技能。如果你能够负担起学费,这会是一个捷径来满足第二个名单,但它绝不是通往量化金融成功的门票。

小结:PhD学位并不是在金工领域取得成功的原因,只不过宽客天才因为喜欢顺便读了个PhD而已。想要取得成就,无论什么行业,都要做到专注、量化思维和善于解决问题,当然还要有聪明的天赋。
3#
梁公子  1级新秀 | 2018-10-17 22:48:09 发帖IP地址来自
我觉得这要区分国内国外还有你自身的背景。国外来讲,比如美国,读phd的目的就是留在学校当老师,如果你硕士就是金融而且想去业界,则完全没有必要去读phd,业界更看重硕士以前的背景和你的工作经历。国内来讲,其实读金融phd也可也不可,与你以后的工作定位有关,当然如果读了phd,就业面肯定是收窄了,一些诸如投行等性质的工作几乎就对你say bye bye 了,就一个原因:嫌你老。另外你硕士之前的专业也很重要,如果之前一直是经济金融,读phd个人认为完全没必要,如果之前的专业是理工科,想换行业,读phd还可以考虑。ps:博士金融专业二年级在读,说粗来都是泪555
4#
Yang Jacques  1级新秀 | 2018-10-17 22:48:10 发帖IP地址来自
如果想在金融领域里做到比较高的位置,博士是必须的。如果仅仅做职员,研究生就够了。
5#
阿布熊  4级常客 | 2018-10-17 22:48:11 发帖IP地址来自
@徐惟能 老师说的很全了。补充一点小小意见。博士生基本就是做一个自己喜欢的项目,最后写一个像书一样厚的博士论文。在美国念的话,还有一些基础学习,培养以后当教授的能力。在英国就直接写论文了。
在选择研究项目的时候,不止要看哪个热门,还要考虑自己有没有相关的学科背景。如果搞模型,量化什么的,统计不行就很累。对行为经济学感兴趣,最好能有心理学背景。
博士是长期斗争,在一个细分领域持续的投入研究(最后的topic其实非常的细),所以要综合考虑自己兴趣和能力,要不然太痛苦。
6#
Juicy  1级新秀 | 2018-10-17 22:48:13 发帖IP地址来自
看你想做什么,想教书或做Quant就读,仅仅只是想找一份金融领域的工作master就够了
7#
Ralph  2级吧友 | 2018-10-17 22:48:15 发帖IP地址来自
金融是个广阔的概念。你说有必要读PhD的必要性是指什么?

我弱弱的假设楼主说的是就业。量化投资部里确实有大量phd,可是我认识的似乎都是读数学的,物理的,反而没听过金融的。而金融的大量是master或bachelor ,分布各种部门。
8#
AlexZ  1级新秀 | 2018-10-17 22:48:17 发帖IP地址来自
quant读
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:
帖子:24326
精华:1
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP