实际波动率的与GARCH的比较

论坛 期权论坛 期权     
牙麦德丶0156   2018-4-26 10:23   5443   1
分享到 :
0 人收藏

1 个回复

倒序浏览
2#
猜我h11  2级吧友 | 2018-4-30 04:48:09 发帖IP地址来自
ABDL(2001b)提出了VAR—RV模型,即所谓的长记忆高斯向量自回归对数实际波动率模型,并且用第T日的实际波动率分别和VAR—RV及GARCH(1,1)利用直到T一1日的信息预测第T日的波动率的结果比较,发现VAR—RV的预测精度远优于GARCH(1,1)的预测精度。
因为GARCH(1,1)用到的是直到T一1日的日收益平方,而VAR—RV利用的却是直到T一1日的日内收益数据,它是基于长记忆的动态模型。这是它优于前者的关键。GARCH(1,1)模型在预测精度方面的不足并不是模型本身的错,而是在日收益中的噪声使得GARCH模型在预测方面显得力不从心,相反却体现了用日内数据来预测波动率的功效。正如ABDL(2001a)指出“二次变动理论揭示:在适当的条件下,RV不仅是日收益波动的无偏估计量,而且渐进地没有度量误差。” GARCH模型通常是针对单变量的,虽然多元的ARCH类模型和随机波动模型也被提出了,如[[]Bollerslv]]、Engle、Nelson(1994)、Ghysels、Harvey、E.Renault(1996)和K.Kroner,Engle(Ng)(1998),但这些模型由于受到维度限制问题(curse —of—di.mensionality)而严重影响了它们的实际应用。而RV在处理多元方面显得游刃有余。正如ABDL(2001b)指出“用多元分形求积高斯向量自回归来处理对数实际波动率,和由ARCH类及相关模型所得结果相比,发现前者有惊人的优势。”


您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:
帖子:
精华:
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP