在早期的文献中,收益率曲线曲率主要与波动率水平有关。Litterman,Scheinkman 和 Weiss 指出(《Volatility and the Yield Curve》,Journal of Fixed Income,1991),较高的波动率应使收益率曲线更加上凸(由于凸度效应),并且收益率曲线曲率和国债期货期权的隐含波动率之间存在着密切的关系。然而,图8显示,曲率和波动率之间的关系仅存在于研究的样本期间(1984-88)。有趣的是,1980年代中期没有发生经济衰退,收益率曲线变化同步性相当高,变平或变陡的预期可能相当薄弱。这种关系在1984-88年度之前和之后不成立,尤其是在近期的经济衰退时期,这时美联储活跃,市场理性的预期曲线形变。例如,1981年的收益率波动率非常大,但收益率曲线是下凸的(向下隆起),见图5和图13。似乎市场对未来曲线形变的预期是收益率曲线曲率的重要决定因素,而不是其波动率预期(凸度偏差)。我们测算的曲率与曲线陡峭程度的相关性约为0.8,而与期权隐含波动率的相关性约为0.1。因此,基于收益率曲线曲率的隐含波动率估计与基于期权价格的隐含波动率并不密切相关。使用收益率曲线形状导出隐含波动率可导致负的波动率估计,这种不合理的结果发生在简单的模型中,当曲线变陡峭的预期使得收益率曲线向下隆起时(见本系列的第5部分)。