波动率微笑的问题,最主要是来自于BSM公式的两个基本假定:
第一个假定是BSM假设标的物价格满足对数正态分布或布朗运动,其潜台词就是不考虑标的物价格的偏度和峰度特性。当然现在前沿的研究还会研究标的物jump(跳跃的特性),而这些标的物价格的特性都没有在BSM公式里面反映出来。因此自然这都为后来我们解释波动率微笑提供了线索。第二个BSM的假定就是假设标的物的波动率为常数,而实证事实表明,波动率是随时间变化的,而且存在明显的随机特性。
说了这么多,什么是波动率微笑呢?
“波动率微笑”, 是指虚值期权和实值期权(out of money和 in the money)的波动率高于在值期权(at the money)的波动率,使得波动率曲线(纵轴为隐含波动率,implied volatility,横轴为行权价)呈现出中间低两边高的向上的半月形,也就是微笑的嘴形,叫波动率微笑。特别注意,BSM公式是假定波动率是一常数,所以按照BSM的逻辑,不管行权价K如何变动,波动率都是常数,是一条直线,但是事实(实证数据)表明,其实是一个两头上翘的曲线(如同微笑)。
好了,说了这么多,如果你想系统的研究波动率微笑怎么办?还是要逐本清源,正统的学习,所以今天推荐一本新书,2016年9月份才出版。
以下是他的简介:
金融数学的大神Emanuel Derman,他的基本简历:BSM发明人布莱克的助手,Black-Derman-Toy模型、Derman-Kani local volatility的发明人,著名畅销书《我的量化人生my life as a quant》的作者,现任哥伦比亚大学金融系教授,金融工程项目负责人。此外他还干了很多促进Quant行业发展的行业准则的制定,比如曾和Paul Wilmott模仿共产党宣言,写了一个《金融建模者宣言-Financial Modelers' Manifesto》(链接可见本推文附录)。
这本书的好处有以下几点:首先,第一本系统的介绍波动率微笑的专业型数据,既很好的立足学术理论,又兼顾了实务。第二点,根据作者建议,前14章,可以作为研究生教材使用,因此适用性强,非完全的理论学术专著,而后十四章则强调前沿学术成果和实务(实证)成果。第三点,课后习题有答案哦,作为附录附在原书后。第四点,可在人大论坛下到高清原版电子版,虽然我们是支持购买原版的。
当然,最后啰嗦一句,学习波动率微笑的时候,请一起把volatility smirk(波动率斜笑,这个中文翻译是啥,好像国内没有统一的说法)的概念也一起复习一下。
前期精彩可见: 【基本无害的量化】所有的代码和数据可下载了