因为自己做个这个东西的过程拟合,所以说点非经济意义的偏门的角度。经济已楼上@Kshir Sagar已经讲过了,就是投资者认为市场未来一段时间会稳定。
自己模型的显示比现在的情形还夸张
首选我们看一下cashvix的特征:
是不是很“粗糙”
一般波动率的粗糙在建模上有两种拥有手段,1是fbm,2是加入跳跃因素。因为1暂时还没有比较通用完善的拟合方法,而且喵也不是很熟,所以我尝试了一下2
我们这里有一个假设,就是cashvix存在 "money long term mean",所以建模的时候可以不不用假设对数OU而是一般OU+跳跃。(有兴趣的可以尝试对数OU)
其中dJ为泊松过程的微分,其跳幅
为正态
由于我们假设了cashvix有money longterm,所以跳幅也不用设为对数正态(有兴趣的可以尝试对数跳幅)
通过特征函数所求得的前六阶cumulent,我们尝试用矩估计的方法估计这个过程必并去计算他长期均值。具体过程不表了,直接给你们看结果。
由于cumulent优化不稳定,严重依赖于初值,尤其依赖于参数mu_bar,所以我试试多初值开始.
以下结果为在未来五年,给定假设下长期均值mu_bar的图像。蓝线和红线的假设分别为:一般OU过程,OU过程加入正态跳跃
mu_bar0=1:
mu_bar0=3
mu_bar0=6:
mu_bar0=8:
mu_bar0=10:
这个calibration是去年年底做的不是很完美,并不是想表达自己多能“预测”vix,黑猫极度厌恶“预测”。
尽管跳跃幅度的两个参数\alpha和\beta特别不鲁棒,而且模型的假设也有些简单。加入跳跃后骤然下降和加速收敛的长期均值已经足以说明两个问题了(厚着脸管这个叫rough but right吧)
1,跳跃是可识别的,识别方法是levy的校准
2,跳跃被“识别”很多直接后果就是更容易滑落长期均值
这个结果具有很多意义
模型上:如果一个OU在拟合的时候把大量短期波动率识别为跳跃,那么他将会得到很低的长期均值。
特征上:cashvix是个短期波动率非常剧烈,而且非常容易被识别跳跃的过程。在这种识别下他的回归值比一般情况下要低很多
经济上:人们的波动率的预期非常“反复”(表现为跳跃),上一个5年经过各种波,人们对波动率的预期已经达到了一个低谷,但是小范围跳跃还会继续(如果这个特征一直保持下去的话)
有兴趣换其他模型做各种校准和解决优化问题的朋友欢饮私下讨论模型细节
|