如何理解 Black-Scholes 期权定价模型

论坛 期权论坛 期权     
默默0678   2017-8-25 22:49   7891   1
如何理解 Black-Scholes 期权定价模型
分享到 :
0 人收藏

1 个回复

倒序浏览
2#
PerfecttEmily  1级新秀 | 2017-8-26 01:00:34 发帖IP地址来自
B-S-M模型假设

1、股票价格随机波动并服从对数正态分布;

2、在期权有效期内,无风险利率和股票资产期望收益变量和价格波动率是恒定的;

3、市场无摩擦,即不存在税收和交易成本;

4、股票资产在期权有效期内不支付红利及其它所得(该假设可以被放弃);

5、该期权是欧式期权,即在期权到期前不可实施;

6、金融市场不存在无风险套利机会;

7、金融资产的交易可以是连续进行的;

8、可以运用全部的金融资产所得进行卖空操作。

B-S-M定价公式

C=S·N(d1)-X·exp(-r·T)·N(d2)

其中:

d1=[ln(S/X)+(r+0.5σ^2)T]/(σ√T)

d2=d1-σ·√T

C—期权初始合理价格

X—期权执行价格

S—所交易金融资产现价

T—期权有效期

r—连续复利计无风险利率

σ—股票连续复利(对数)回报率的年度波动率(标准差)

N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:

第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:
帖子:
精华:
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP