3.2、 隐含波动率微笑随机模型
当 BS 隐含波动率被用来评估具有不同执行价 K 和到期期限 h 的新期权时,这可能在期权定价和保值中产生偏差。
一般认为波动率的微笑效应必须由随机波动率模型来解释。这有几个理由:
首先,应用随机时变波动率模型来表示随机时变BS 隐含波动率是很自然的。
其次,微笑下降的幅度是到期期限的函数,实际情况显示,当到期期限增加时,波动率消除了条件异方差,从而减少微笑现象。
最后,偏度本身也可以被归因于波动率过程的随机特征以及该过程与价格过程(所谓的杠杆效应)的整体相关性。事实上,这个效应对股票价格数据是很明显的,但是对利率和汇率序列却是很小的,这就是为什么微笑的偏度在以股票为标的期权时更常见。
关于解释微笑及其偏度的其它论据(跳跃,交易成本,买卖差价,非同步交易,流动性问题, …)在理论上和实证上都应加以考虑。例如,实证证据表明最昂贵的期权(微笑曲线的上部)也是最小流动性的期权;因此偏度或许可归因于期权市场中流动性的特殊结构形式。
3.3、 隐含波动率的期限结构
Black-Scholes模型所预测波动率的期限结构是平缓的。
事实上,当短期波动率很低的时候,实值期权的隐含波动率的期限结构是向上倾斜的,反之则向下倾斜(Stein(1989))。
Taylor 和 Xu (1994)发现外汇期权隐含波动率的期限结构每几个月都要改变一次斜率方向。
Stein(1989)也发现中短期隐含波动率的实际敏感度比预测期限结构得到的估计敏感度要更大一些,并且得出中期隐含波动率对信息具有过度反应的结论。 Diz 和 Finucane(1993)运用不同的估计技术拒绝了过度反应假设,同时报告了反应不足的证据。
3.4、 隐含波动率曲面
隐含波动率ω(t,t + h) 在很大程度上取决于日历时间t、到期期限 h 和期权的货币性。
我们可以通过插值的方法构建波动率曲面,从直观的角度了解隐含波动率。