数据结构中树与二叉树的区别在于?

论坛 期权论坛 期权     
匿名   2018-4-26 13:39   5283   3
分享到 :
0 人收藏

3 个回复

倒序浏览
2#
热心网友  15级至尊 | 2018-4-30 02:34:32 发帖IP地址来自
树是一种简单的非线性结构,所有元素之间具有明显的层次特性。
在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称树的根。每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。树的最大层次称为树的深度。
二叉树的特点:(1)非空二叉树只有一个根结点;(2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
二叉树的基本性质:
(1)在二叉树的第k层上,最多有2k-1(k≥1)个结点;(2)深度为m的二叉树最多有2m-1个结点;
(3)度为0的结点(即叶子结点)总是比度为2的结点多一个;
(4)具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]+1表示取log2n的整数部分;
(5)具有n个结点的完全二叉树的深度为[log2n]+1;
(6)设完全二叉树共有n个结点。如果从根结点开始,按层序(每一层从左到右)用自然数1,2,….n给结点进行编号(k=1,2….n),有以下结论:
①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为INT(k/2);
②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(也无右子结点);
③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。
满二叉树是指除最后一层外,每一层上的所有结点有两个子结点,则k层上有2k-1个结点深度为m的满二叉树有2m-1个结点。
完全二叉树是指除最后一层外,每一层上的结点数均达到最大值,在最后一层上只缺少右边的若干结点。
二叉树存储结构采用链式存储结构,对于满二叉树与完全二叉树可以按层序进行顺序存储。
二叉树的遍历:
(1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树;
(2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树;
(3)后序遍历(LRD)首先遍历左子树,然后访问遍历右子树,最后访问根结点。
3#
热心网友  15级至尊 | 2018-4-30 02:34:33 发帖IP地址来自
树结构中的每个节点可以拥有0个或多个子节点,但每个节点只能有一个父节点,这个规则唯一的列外就是根结点,是没有父节点的。
一个二叉树就是每个节点只能最多拥有2个子节点的树结构,这些子节点一般被视为左子节点和右子节点。
4#
热心网友  15级至尊 | 2018-4-30 02:34:34 发帖IP地址来自
二叉树是树的一种,二叉树只能有两个孩子,而树不一定!
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:58388
帖子:6688
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP