点击上方蓝字 ↑ 关注公众号,点击[阅读原]文直达arXiv cs.LG 方向,今日共计99篇
【1】 Neural tangent kernels, transportation mappings, and universal approximation
标题:神经切核,传输映射和通用逼近
作者: Ziwei Ji, Matus Telgarsky
链接:https://arxiv.org/abs/1910.06956
【2】 The Local Elasticity of Neural Networks
标题:神经网络的局部弹性
作者: Hangfeng He, Weijie J. Su
链接:https://arxiv.org/abs/1910.06943
【3】 DP-MAC: The Differentially Private Method of Auxiliary Coordinates for Deep Learning
标题:DP-MAC:用于深度学习的辅助坐标差分私有方法
作者: Frederik Harder, Jonas Khler
链接:https://arxiv.org/abs/1910.06924
【4】 Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs
标题:支持向量机、Wasserstein距离和梯度惩罚GANS之间的关系
作者: Alexia Jolicoeur-Martineau, Ioannis Mitliagkas
链接:https://arxiv.org/abs/1910.06922
【5】 Overwrite Quantization: Opportunistic Outlier Handling for Neural Network Accelerators
标题:重写量化:神经网络加速器的机会主义异常值处理
作者: Ritchie Zhao, Christopher De Sa
链接:https://arxiv.org/abs/1910.06909
【6】 Machine Learning for Paper Grammage Prediction Based on Sensor Measurements in Paper Mills
标题:基于传感器测量的造纸厂纸量预测的机器学习
作者: Hosny Abbas
链接:https://arxiv.org/abs/1910.06908
【7】 Techniques for Adversarial Examples Threatening the Safety of Artificial Intelligence Based Systems
标题:威胁基于人工智能的系统安全的对抗性实例的技术
作者: Utku Kose
备注:International Science and Innovation Congress 2019, pp. 643-655, 13 pages, 10 figures
链接:https://arxiv.org/abs/1910.06907
【8】 Extracting robust and accurate features via a robust information bottleneck
标题:通过健壮的信息瓶颈提取健壮和准确的特征
作者: Ankit Pensia, Varun Jog
链接:https://arxiv.org/abs/1910.06893
【9】 On Higher-order Moments in Adam
标题:关于亚当的高阶矩
作者: Zhanhong Jiang, Aditya Balu
备注:Accepted in Beyond First Order Methods in Machine Learning workshop in 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada
链接:https://arxiv.org/abs/1910.06878
【10】 Approximate Inference in Discrete Distributions with Monte Carlo Tree Search and Value Functions
标题:用Monte Carlo树搜索和值函数近似推断离散分布
作者: Lars Buesing, Nicolas Heess
链接:https://arxiv.org/abs/1910.06862
【11】 Breadth-first, Depth-next Training of Random Forests
标题:随机森林的广度优先、深度其次训练
作者: Andreea Anghel, Nikolas Ioannou
链接:https://arxiv.org/abs/1910.06853
【12】 Elementos da teoria de aprendizagem de máquina supervisionada
标题:Elementos da teoria de aprendizagem de máquina supervisionada
作者: Vladimir G. Pestov
备注:390 pp. + vii, in Portuguese, a preliminary version, to be published by IMPA as a book of lectures of the 23nd Brazilian Math Colloquium (July 28 - Aug 2, 2019), submitted to arXiv upon IMPA permission
链接:https://arxiv.org/abs/1910.06820
【13】 REVE: Regularizing Deep Learning with Variational Entropy Bound
标题:REVE:用变分熵界正则化深度学习
作者: Antoine Saporta, Yifu Chen
备注:Published in 2019 IEEE International Conference on Image Processing (ICIP)
链接:https://arxiv.org/abs/1910.06816
【14】 Improving Robustness of time series classifier with Neural ODE guided gradient based data augmentation
标题:基于神经ODE引导的基于梯度的数据增强提高时间序列分类器的鲁棒性
作者: Anindya Sarkar, Anirudh Sunder Raj
链接:https://arxiv.org/abs/1910.06813
【15】 Federated Learning for Coalition Operations
标题:联盟作战联合学习
作者: D. Verma, S. Calo
备注:Presented at AAAI FSS-19: Artificial Intelligence in Government and Public Sector, Arlington, Virginia, USA
链接:https://arxiv.org/abs/1910.06799
【16】 Early Prediction of Sepsis From Clinical Datavia Heterogeneous Event Aggregation
标题:从临床数据异构事件聚合中早期预测脓毒症
作者: Luchen Liu, Haoxian Wu
备注:4 pages, 2 figures, Accept by CINC 2019
链接:https://arxiv.org/abs/1910.06792
【17】 Deep learning for Aerosol Forecasting
标题:气溶胶预报的深度学习
作者: Caleb Hoyne, S. Karthik Mukkavilli
备注:Machine Learning and the Physical Sciences Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada
链接:https://arxiv.org/abs/1910.06789
【18】 Stabilizing Transformers for Reinforcement Learning
标题:用于强化学习的稳定变压器
作者: Emilio Parisotto, H. Francis Song
链接:https://arxiv.org/abs/1910.06764
【19】 Causal Mechanism Transfer Network for Time Series Domain Adaptation in Mechanical Systems
标题:机械系统时序域自适应的因果机制转移网络
作者: Zijian Li, Ruichu Cai
链接:https://arxiv.org/abs/1910.06761
【20】 Full-Scale Continuous Synthetic Sonar Data Generation with Markov Conditional Generative Adversarial Networks
标题:基于马尔可夫条件生成对抗网络的全尺度连续合成声纳数据生成
作者: Marija Jegorova, Antti Ilari Karjalainen
备注:6 pages, 6 figures. Submitted to ICRA2020
链接:https://arxiv.org/abs/1910.06750
【21】 Generic Bounds on the Maximum Deviations in Sequential Prediction: An Information-Theoretic Analysis
标题:序列预测中最大偏差的一般界限:信息论分析
作者: Song Fang, Quanyan Zhu
备注:arXiv admin note: text overlap with arXiv:1904.04765
链接:https://arxiv.org/abs/1910.06742
【22】 Adaptive template systems: Data-driven feature selection for learning with persistence diagrams
标题:自适应模板系统:使用持久性图进行学习的数据驱动特征选择
作者: Luis Polanco, Jose A. Perea
备注:To appear in proceedings of IEEE ICMLA 2019
链接:https://arxiv.org/abs/1910.06741
【23】 Testing and verification of neural-network-based safety-critical control software: A systematic literature review
标题:基于神经网络的安全关键控制软件的测试和验证:系统文献综述
作者: Jin Zhang, Jingyue Li
备注:This paper had been submitted to Journal of Information and Software Technology on April 20, 2019
链接:https://arxiv.org/abs/1910.06715
【24】 Neural Approximation of an Auto-Regressive Process through Confidence Guided Sampling
标题:自回归过程的置信引导抽样神经逼近
作者: YoungJoon Yoo, Sanghyuk Chun
链接:https://arxiv.org/abs/1910.06705
【25】 SafeCritic: Collision-Aware Trajectory Prediction
标题:SafeCritic:碰撞感知轨迹预测
作者: Tessa van der Heiden, Naveen Shankar Nagaraja
备注:To Appear as workshop paper for the British Machine Vision Conference (BMVC) 2019
链接:https://arxiv.org/abs/1910.06673
【26】 Enhancing the Transformer with Explicit Relational Encoding for Math Problem Solving
标题:用显式关系编码增强变压器求解数学问题
作者: Imanol Schlag, Paul Smolensky
链接:https://arxiv.org/abs/1910.06611
【27】 SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference
标题:种子RL:可扩展且高效的加速中央推理的Deep-RL
作者: Lasse Espeholt, Raphal Marinier
链接:https://arxiv.org/abs/1910.06591
【28】 MSD-Kmeans: A Novel Algorithm for Efficient Detection of Global and Local Outliers
标题:MSD-Kmeans:一种有效检测全局和局部异常值的新算法
作者: Yuanyuan Wei, Julian Jang-Jaccard
链接:https://arxiv.org/abs/1910.06588
【29】 Probabilistic Time of Arrival Localization
标题:概率到达时间定位
作者: Fernando Perez-Cruz, Pablo M. Olmos
备注:IEEE Signal Processing Letters, 2019
链接:https://arxiv.org/abs/1910.06569
【30】 Compacting, Picking and Growing for Unforgetting Continual Learning
标题:压实、采摘、成长让人难以忘怀的持续学习
作者: Steven C.Y. Hung, Cheng-Hao Tu
备注:To appear in the thirty-third Conference on Neural Information Processing Systems (NeurIPS) 2019
链接:https://arxiv.org/abs/1910.06562
【31】 Training CNNs faster with Dynamic Input and Kernel Downsampling
标题:利用动态输入和内核下采样更快地训练CNN
作者: Zissis Poulos, Ali Nouri
链接:https://arxiv.org/abs/1910.06548
【32】 Learning Classifiers on Positive and Unlabeled Data with Policy Gradient
标题:基于策略梯度的正数据和无标签数据的分类器学习
作者: Tianyu Li, Chien-Chih Wang
备注:10-page regular paper accepted by IEEE ICDM 2019
链接:https://arxiv.org/abs/1910.06535
【33】 Adaptive Step Sizes in Variance Reduction via Regularization
标题:通过正则化实现方差缩减的自适应步长
作者: Bingcong Li, Georgios B. Giannakis
链接:https://arxiv.org/abs/1910.06532
【34】 Machine Learning for Generalizable Prediction of Flood Susceptibility
标题:泛化洪水易感性预测的机器学习
作者: Chelsea Sidrane, Dylan J Fitzpatrick
备注:Will be presented at hadri.ai 2019, a workshop at NeurIPS
链接:https://arxiv.org/abs/1910.06521
【35】 ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization
标题:ZO-AdaMM:黑箱优化的零阶自适应动量法
作者: Xiangyi Chen, Sijia Liu
链接:https://arxiv.org/abs/1910.06513
【36】 Shapley Homology: Topological Analysis of Sample Influence for Neural Networks
标题:Shapley同调:样本对神经网络影响的拓扑分析
作者: Kaixuan Zhang, Qinglong Wang
链接:https://arxiv.org/abs/1910.06509
【37】 Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling
标题:通过条件重要性抽样理解非政策评估中的视界诅咒
作者: Yao Liu, Pierre-Luc Bacon
链接:https://arxiv.org/abs/1910.06508
【38】 Reinforcement learning with spiking coagents
标题:使用刺激性助剂的强化学习
作者: Sneha Aenugu, Abhishek Sharma
链接:https://arxiv.org/abs/1910.06489
【39】 Low Bit-Rate Speech Coding with VQ-VAE and a WaveNet Decoder
标题:基于VQ-VAE和WaveNet解码器的低比特率语音编码
作者: Cristina Grbacea, Aron van den Oord
备注:ICASSP 2019
链接:https://arxiv.org/abs/1910.06464
【40】 Mixed Pooling Multi-View Attention Autoencoder for Representation Learning in Healthcare
标题:医疗保健中用于表征学习的混合池多视图注意自动编码器
作者: Shaika Chowdhury, Chenwei Zhang
链接:https://arxiv.org/abs/1910.06456
【41】 A unified view of likelihood ratio and reparameterization gradients and an optimal importance sampling scheme
标题:似然比和再参数化梯度的统一观点和最优重要性抽样方案
作者: Paavo Parmas, Masashi Sugiyama
备注:8 pages + 19 pages appendix. Preliminary work
链接:https://arxiv.org/abs/1910.06419
【42】 BoTorch: Programmable Bayesian Optimization in PyTorch
标题:BoTorch:PyTorch中的可编程贝叶斯优化
作者: Maximilian Balandat, Brian Karrer
链接:https://arxiv.org/abs/1910.06403
【43】 SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning
标题:支架:用于设备上联合学习的随机控制平均
作者: Sai Praneeth Karimireddy, Satyen Kale
链接:https://arxiv.org/abs/1910.06378
【44】 Thresholding Bandit Problem with Both Duels and Pulls
标题:既有对偶又有拉力的门限强盗问题
作者: Yichong Xu, Xi Chen
链接:https://arxiv.org/abs/1910.06368
【45】 Robust Importance Weighting for Covariate Shift
标题:协变量漂移的鲁棒重要性加权
作者: Henry Lam, Fengpei Li
链接:https://arxiv.org/abs/1910.06324
【46】 SegSort: Segmentation by Discriminative Sorting of Segments
标题:SegSort:通过区别性分段排序进行分段
作者: Jyh-Jing Hwang, Stella X. Yu
备注:In ICCV 2019. Webpage & Code: this https URL
链接:https://arxiv.org/abs/1910.06962
【47】 Context Matters: Recovering Human Semantic Structure from Machine Learning Analysis of Large-Scale Text Corpora
标题:语境问题:从大规模文本语料库的机器学习分析中恢复人类语义结构
作者: Marius Ctlin Iordan, Tyler Giallanza
链接:https://arxiv.org/abs/1910.06954
【48】 Electron Neutrino Energy Reconstruction in NOvA Using CNN Particle IDs
标题:利用CNN粒子ID重建新星电子中微子能量
作者: Shiqi Yu
备注:Talk presented at the 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston, C1907293. Experimental speakers: Please note possible restrictions from your experiment about internal approval of proceedings prior to submission to arXiv
链接:https://arxiv.org/abs/1910.06953
【49】 Jointly Discriminative and Generative Recurrent Neural Networks for Learning from fMRI
标题:用于fMRI学习的联合判别和生成递归神经网络
作者: Nicha C. Dvornek, Xiaoxiao Li
备注:10th International Workshop on Machine Learning in Medical Imaging (MLMI 2019)
链接:https://arxiv.org/abs/1910.06950
【50】 How to eliminate detour behaviors in E-hailing: On-line detection and Pricing regulation
标题:如何消除网约车中的绕道行为:在线检测与定价监管
作者: Qiong Tian, Yue Yang
链接:https://arxiv.org/abs/1910.06949
【51】 Data-Driven Deep Learning of Partial Differential Equations in Modal Space
标题:模态空间中偏微分方程的数据驱动深度学习
作者: Kailiang Wu, Dongbin Xiu
链接:https://arxiv.org/abs/1910.06948
【52】 Learning Sample-Specific Models with Low-Rank Personalized Regression
标题:用低秩个人化回归学习样本特定模型
作者: Benjamin Lengerich, Bryon Aragam
备注:Accepted at NeurIPS 2019
链接:https://arxiv.org/abs/1910.06939
【53】 Identifying Epigenetic Signature of Breast Cancer with Machine Learning
标题:基于机器学习的乳腺癌表观遗传特征识别
作者: Maxim Vaysburd
链接:https://arxiv.org/abs/1910.06899
【54】 Computational Psychology to Embed Emotions into News or Advertisements to Increase Reader Affinity
标题:在新闻或广告中嵌入情感以增加读者亲和力的计算心理学
作者: Hrishikesh Kulkarni, P Joshi
链接:https://arxiv.org/abs/1910.06859
【55】 DeepGCNs: Making GCNs Go as Deep as CNNs
标题:DeepGCNs:让GCNS与CNN一样深入
作者: Guohao Li, Matthias Müller
备注:First two authors contributed equally. This work is a journal extension of our ICCV'19 paper arXiv:1904.03751
链接:https://arxiv.org/abs/1910.06849
【56】 A greedy anytime algorithm for sparse PCA
标题:稀疏PCA的贪婪Anytime算法
作者: Guy Holtzman, Adam Soffer
链接:https://arxiv.org/abs/1910.06846
【57】 A Compact Neural Architecture for Visual Place Recognition
标题:一种用于视觉位置识别的紧凑神经结构
作者: Marvin Chancán, Luis Hernandez-Nunez
备注:Submitted to RA-L with ICRA 2020 presentation option, 8 pages, 13 figures
链接:https://arxiv.org/abs/1910.06840
【58】 Man-in-the-Middle Attacks against Machine Learning Classifiers via Malicious Generative Models
标题:通过恶意生成模型对机器学习分类器的中间人攻击
作者: Derui (Derek) Wang, Chaoran Li
链接:https://arxiv.org/abs/1910.06838
【59】 Discriminator optimal transport
标题:鉴别器最优传输
作者: Akinori Tanaka
链接:https://arxiv.org/abs/1910.06832
【60】 Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis
标题:学习预测布局到图像的条件卷积用于语义图像合成
作者: Xihui Liu, Guojun Yin
链接:https://arxiv.org/abs/1910.06809
【61】 Weakly Labeled Sound Event Detection Using Tri-training and Adversarial Learning
标题:基于三次训练和对抗性学习的弱标记声音事件检测
作者: Hyoungwoo Park, Sungrack Yun
备注:5 pages, DCASE 2019 Workshop
链接:https://arxiv.org/abs/1910.06790
【62】 Dynamic Graph Configuration with Reinforcement Learning for Connected Autonomous Vehicle Trajectories
标题:基于强化学习的连通自主车辆轨迹动态图配置
作者: Udesh Gunarathna, Hairuo Xie
链接:https://arxiv.org/abs/1910.06788
【63】 Acoustic Scene Classification Based on a Large-margin Factorized CNN
标题:基于大边距因子分解CNN的声学场景分类
作者: Janghoon Cho, Sungrack Yun
备注:5 pages, DCASE 2019 Workshop
链接:https://arxiv.org/abs/1910.06784
【64】 Counterfactual diagnosis
标题:反事实诊断
作者: Jonathan G. Richens, Ciaran M. Lee
链接:https://arxiv.org/abs/1910.06772
【65】 Parameter Constrained Transfer Learning for Low Dose PET Image Denoising
标题:参数约束转移学习在低剂量PET图像去噪中的应用
作者: Yu Gong, Yueyang Teng
链接:https://arxiv.org/abs/1910.06749
【66】 Mitigating the Effect of Dataset Bias on Training Deep Models for Chest X-rays
标题:减轻数据集偏差对训练胸部X光深层模型的影响
作者: Yundong Zhang, Hang Wu
链接:https://arxiv.org/abs/1910.06745
【67】 Integrating Temporal and Spatial Attentions for VATEX Video Captioning Challenge 2019
标题:集成时间和空间关注的VATEX视频字幕挑战2019年
作者: Shizhe Chen, Yida Zhao
备注:ICCV 2019 VATEX challenge
链接:https://arxiv.org/abs/1910.06737
【68】 Continuous and Discrete-Time Survival Prediction with Neural Networks
标题:神经网络在连续和离散时间生存预测中的应用
作者: Hvard Kvamme, rnulf Borgan
链接:https://arxiv.org/abs/1910.06724
【69】 Distilled embedding: non-linear embedding factorization using knowledge distillation
标题:提取嵌入:使用知识提取的非线性嵌入因子分解
作者: Vasileios Lioutas, Ahmad Rashid
链接:https://arxiv.org/abs/1910.06720
【70】 Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation
标题:自然语言生成中用于领域自适应的具有知识共享的树结构语义编码器
作者: Bo-Hsiang Tseng, Pawe Budzianowski
备注:Published in SIGDIAL2019
链接:https://arxiv.org/abs/1910.06719
【71】 How does the Mind store Information?
标题:心灵是如何储存信息的?
作者: Rina Panigrahy
链接:https://arxiv.org/abs/1910.06718
【72】 Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation
标题:自动调整变压器网络的大小:提高低资源机器翻译的速度、效率和性能
作者: Kenton Murray, Jeffery Kinnison
备注:The 3rd Workshop on Neural Generation and Translation (WNGT 2019)
链接:https://arxiv.org/abs/1910.06717
【73】 MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
标题:Melgan:条件波形合成的生成性对抗网络
作者: Kundan Kumar, Rithesh Kumar
链接:https://arxiv.org/abs/1910.06711
【74】 A Deep Learning Based Chatbot for Campus Psychological Therapy
标题:基于深度学习的校园心理治疗聊天机器人
作者: Junjie Yin, Zixun Chen
链接:https://arxiv.org/abs/1910.06707
【75】 Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models
标题:通过耦合3D游戏引擎和概率图形模型生成人类动作视频
作者: César Roberto de Souza, Adrien Gaidon
链接:https://arxiv.org/abs/1910.06699
【76】 VFNet: A Convolutional Architecture for Accent Classification
标题:VFNet:一种用于口音分类的卷积体系结构
作者: Asad Ahmed, Pratham Tangri
备注:Accepted at IEEE INDICON 2019
链接:https://arxiv.org/abs/1910.06697
【77】 Seeing and Hearing Egocentric Actions: How Much Can We Learn?
标题:看到和听到以自我为中心的行动:我们能学到多少?
作者: Alejandro Cartas, Jordi Luque
备注:Accepted for the Fifth International Workshop on Egocentric Perception, Interaction and Computing (EPIC) at the International Conference on Computer Vision (ICCV) 2019
链接:https://arxiv.org/abs/1910.06693
【78】 AI Benchmark: All About Deep Learning on Smartphones in 2019
标题:人工智能基准:2019年智能手机深度学习
作者: Andrey Ignatov, Radu Timofte
链接:https://arxiv.org/abs/1910.06663
【79】 A Single Scalable LSTM Model for Short-Term Forecasting of Disaggregated Electricity Loads
标题:用于分类电力负荷短期预测的单一可扩展LSTM模型
作者: Andrés M. Alonso, F. Javier Nogales
链接:https://arxiv.org/abs/1910.06640
【80】 Cascading Machine Learning to Attack Bitcoin Anonymity
标题:级联机器学习攻击比特币的匿名性
作者: Francesco Zola, Maria Eguimendia
备注:15 pages,7 figures, 4 tables, presented in 2019 IEEE International Conference on Blockchain (Blockchain)
链接:https://arxiv.org/abs/1910.06560
【81】 Improved Generalization Bound of Permutation Invariant Deep Neural Networks
标题:置换不变深层神经网络的改进泛化界
作者: Akiyoshi Sannai, Masaaki Imaizumi
链接:https://arxiv.org/abs/1910.06552
【82】 RiWalk: Fast Structural Node Embedding via Role Identification
标题:RiWalk:通过角色识别的快速结构节点嵌入
作者: Xuewei Ma, Geng Qin
备注:Accepted as a regular paper at IEEE ICDM 2019. 10 pages, 5 figures
链接:https://arxiv.org/abs/1910.06541
【83】 Challenges in Bayesian inference via Markov chain Monte Carlo for neural networks
标题:神经网络中基于马尔可夫链蒙特卡罗的贝叶斯推理的挑战
作者: Theodore Papamarkou, Jacob Hinkle
链接:https://arxiv.org/abs/1910.06539
【84】 Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG
标题:通过非对称SVRG在近线性时间内进行主成分投影和回归
作者: Yujia Jin, Aaron Sidford
备注:37 pages, 3 figures; to appear in NeurIPS '19 (Spotlight)
链接:https://arxiv.org/abs/1910.06517
【85】 PRS-Net: Planar Reflective Symmetry Detection Net for 3D Models
标题:PRS-Net:三维模型的平面反射对称检测网络
作者: Lin Gao, Ling-Xiao Zhang
链接:https://arxiv.org/abs/1910.06511
【86】 Hierarchical Semantic Correspondence Learning for Post-Discharge Patient Mortality Prediction
标题:用于出院后患者死亡率预测的分层语义对应学习
作者: Shaika Chowdhury, Chenwei Zhang
链接:https://arxiv.org/abs/1910.06492
【87】 State of Compact Architecture Search For Deep Neural Networks
标题:深层神经网络紧凑结构搜索研究现状
作者: Mohammad Javad Shafiee, Andrew Hryniowski
链接:https://arxiv.org/abs/1910.06466
【88】 TCD-NPE: A Re-configurable and Efficient Neural Processing Engine, Powered by Novel Temporal-Carry-deferring MACs
标题:TCD-NPE:一种可重新配置的高效神经处理引擎,由新型的时间进位延迟MAC驱动
作者: Ali Mirzaeian, Houman Homayoun
链接:https://arxiv.org/abs/1910.06458
【89】 Building Damage Detection in Satellite Imagery Using Convolutional Neural Networks
标题:基于卷积神经网络的卫星图像建筑物损伤检测
作者: Joseph Z. Xu, Wenhan Lu
链接:https://arxiv.org/abs/1910.06444
【90】 Restoration of marker occluded hematoxylin and eosin stained whole slide histology images using generative adversarial networks
标题:使用生成性对抗网络恢复标记闭塞的苏木素和曙红染色的整个幻灯片组织学图像
作者: Bairavi Venkatesh, Tosha Shah
链接:https://arxiv.org/abs/1910.06428
【91】 FireNet: Real-time Segmentation of Fire Perimeter from Aerial Video
标题:FireNet:从航空视频中实时分割火灾边界
作者: Jigar Doshi, Dominic Garcia
备注:Published at NeurIPS 2019; Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response(AI+HADR 2019)
链接:https://arxiv.org/abs/1910.06407
【92】 Physics-Informed Deep Neural Network Method for Limited Observability State Estimation
标题:有限可观测性状态估计的物理信息深度神经网络方法
作者: Jonatan Ostrometzky, Konstantin Berestizshevsky
链接:https://arxiv.org/abs/1910.06401
【93】 In-training Matrix Factorization for Parameter-frugal Neural Machine Translation
标题:参数节约型神经机器翻译的在线训练矩阵分解
作者: Zachary Kaden, Teven Le Scao
链接:https://arxiv.org/abs/1910.06393
【94】 AFP-CKSAAP: Prediction of Antifreeze Proteins Using Composition of k-Spaced Amino Acid Pairs with Deep Neural Network
标题:AFP-CKSAAP:利用k-空间氨基酸对组成的深度神经网络预测抗冻蛋白
作者: Muhammad Usman, Jeong A Lee
备注:Accepted for oral presentation at 19th 2019 IEEE International Conference on Bioinformatics and Bioengineering (IC-BIBE 2019) Copyright (c) 2019 IEEE
链接:https://arxiv.org/abs/1910.06392
【95】 Building Information Modeling and Classification by Visual Learning At A City Scale
标题:基于视觉学习的城市尺度建筑信息建模与分类
作者: Qian Yu, Chaofeng Wang
备注:33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada
链接:https://arxiv.org/abs/1910.06391
【96】 Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation
标题:双路径RNN:用于时域单通道语音分离的高效长序列建模
作者: Yi Luo, Zhuo Chen
链接:https://arxiv.org/abs/1910.06379
【97】 Bayesian Temporal Factorization for Multidimensional Time Series Prediction
标题:多维时间序列预测的贝叶斯时间分解
作者: Lijun Sun, Xinyu Chen
链接:https://arxiv.org/abs/1910.06366
【98】 Pruning a BERT-based Question Answering Model
标题:基于BERT的问题回答模型的剪枝
作者: J.S. McCarley
链接:https://arxiv.org/abs/1910.06360
【99】 Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
标题:不对称Shapley值:将因果知识纳入模型不可知性解释
作者: Christopher Frye, Ilya Feige
链接:https://arxiv.org/abs/1910.06358
机器翻译,仅供参考
|