期权定价公式与影响因素介绍

论坛 期权论坛 期权     
查查期权   2019-6-15 18:14   4110   0
1. 最有影响力的期权定价公式:布莱克-斯科尔斯公式,下式为无红利的欧式看涨期权定价模型:
C=S*N(d1)-Xe^[-(r(T-t))]*N(d2)
d1=(ln(S/X)+(r+б^2/2)(T-t))/б(T-t)^(1/2)
d2=d1-б(T-t)^(1/2)
上式中N(d)表示累计正态分布
S-------表示股票当前的价格
X-------表示期权的执行价格
PV-----代表折现
T-t-----表示行权价格距离现在到期日
N-------表示正态分布
б-------表示波动率


布莱克斯科尔斯公式提供了一种欧式期权的理论价值计算方法,它源于布莱克-斯科尔斯模型。1997年10月10日,模型创立者罗伯特·莫顿(Robert Merton)和迈伦·斯科尔斯(Myron Scholes)获诺贝尔经济学奖。


2 . 期权理论价格影响因素

该模型比较复杂,我们可以简单地类比和汽车保险来理解它。两者都主要取决于:


资产的价值(汽车或者现货)
风险(您的驾驶记录或者是现货的平均价格变化)
对比驾驶者甲和驾驶者乙:


驾驶者甲是一个17岁的男高中生,自从拿到驾照之后,已经吃了两张超速罚单。他的父母给他买了一辆法拉利,保险杠上贴着:“我开不了太慢”。
驾驶者乙是一个35岁的家庭主妇,开一辆本田雅阁,在过去十年都没有交通违规。
很显然,谁的风险更大、保费更高?保险代理人甚至会拒绝给驾驶者A提供保险。


让我们将汽车保险与某商品的期权价格做如下对比,按上述公式计算看涨、看跌期权理论价格,并分析影响因素,见图表1:


2.1 标的证券价格的影响
商品期货的期货结算价与现货有很高的相关度。如果现货上涨,那么期货、期权多头都随之上涨,反之相反。
标的商品现货价格是影响期权价值最重要的因素,而且波动及其剧烈,因为其衍生品的属性。期权这种衍生品主要是反映未来买卖现货的权利。


2.2 行权价的影响
行权价是允许投资者行权的价格,即买或卖标的现货的价格。它就像汽车保险中可抵扣的项目。可抵扣额度的变化将剧烈影响保险价格。


看涨期权是买入的权利,因此行权价比目前现货还低的看涨期权明显具有价值。如果现货目前在2100元,那么行权价2050元的看涨期权比行权价2150元的看涨期权价值大很多,见图表3。


对于看跌期权,情况相反。行权价比标的现货高的看跌期权价值更大,因为他们是卖出的权利。注意:看涨期权和看跌期权随着行权价不同而波动。


图表3 行权价对期权价格的影响



2.3 剩余时间的影响
到期时间:在多长时间后期权将结束的时间长度。到期时间90天的期权一定比30天的更有价值么?这是一个策略问题,市场上还有90天到期的期权比还剩30天的价值一定更大,见图表4。


注意:期权价值随时间非线性地变化。也就是说90天比30天长三倍,但价值并不是高3倍。


图表4 剩余时间对期权价格的影响


时间会影响期权的价格。事实上,如果商品现货价格不变,期权价值会随着到期日的临近而降低。这个概念就叫做时间价值或时间损耗。


作为期权的多头或空头,您在期权交易时必须考虑期权价值的时间损耗,以便选择最符合您的交易策略的期权。附图中说明了此期权从到期90天到到期日的价格变化。注:在到期之前的最后30天,时间价值非线性变化,并归零,见图表5。


图表5 期权价值随到期日的变化

2.4 无风险利率的影响
利率很重要,因为货币总可获得无风险收益率。期权定价时,由于期权的创造者往往要融资买入或卖出某种资产,而融来的资金需要支付借款利息,因此融资成本必须考虑,而期权价格中包括融入款的利息成本。


随利率上升,看涨期权价值上升,看跌期权价值下降,这是因为卖出看涨期权的人由于需要提前买入标的现货,需要借款,产生了利息,这部分利息支出转移到了看涨期权上。这点从期权定价公式中也可以看出,见图表6.


图表6 无风险利率对期权价格的影响




2.5 波动率的影响
波动率影响着标的资产在一天、一周或一年中波动情况的。同时,它也是定价公式、交易策略、整个市场中唯一未知的变量。这是您及整个市场需要预测的一个变量。举例来说,对于驾驶员A,接下来30天内,他遇到交通事故的可能性是10%?30%?或50%?这无法获知,但您必须预测。


对于某种商品期货现货8%的波动率,含义:当前点位是2100元时,在大部分情况下,现货将在1932点到2268点的范围内交易。这可能正确,可能错误。随着波动率的增加,看涨期权和看跌期权的价值都将增加,如图表7。

图表7 波动率对期权价格的影响



如果您交易过股票,您可能已经理解了波动率。在现货的世界里,这其实就是风险。商品现货价格波动越大,风险也就越大,而以此为标的的期权价值也就越大。


对于现货来说,价格波动是按波动的方向和波动的幅度来衡量。对于期权波动率来说,我们只关注价格波动的幅度,而不是方向。波动率反映平均和预期价格变动幅度的一个百分数,如图表8。


图表8 波动率分布示意图

2.6 实值期权、平值期权和虚值期权(Moneyness)
实值期权:对看涨期权:行权价格低于标的商品现货价格;对看跌期权:行权价格高于标的商品现货价格。
虚值期权:对看涨期权:行权价格高于标的商品现货价格;对看跌期权:行权价格低于标的商品现货价格。
平值期权:行权价格等于商品现货市场价格。如图表9.


图表9 期权价值与行权价关系


只有实值期权有内在价值,对于一个行权价格为2100元、而市价为2200元的看涨期权,其至少对应100元价值,持有者可立刻执行期权的权利,以2100元的价格买入现货,并以2200元卖出,赚100元。


但期权的价值不止于此,这是因为无论是实值、平值和虚值期权,都有时间价值。时间价值是由于标的证券可能的价格波动产生的额外价值,如图表10.


图表10 行权价、剩余时间对期权价格的影响

如果行权价格2100元的看涨期权,其现货为2200元,权利金为120元,那么其中有100元对应实值部分,20元为时间价值。这额外的20元,归咎于现货潜在的波动率(也就是说它可能还上涨)。


对于标的现货2100元,行权价格为2100元,看涨期权权利金60元,这60元完全对应波动率价值和时间价值;同理,对于标的现货2100元,行权价2200元,看涨期权20元,那么这20元也仅对应波动率价值和时间价值。


期权的价值不可能为负,内在价值和时间价值都不可能为负。


2.7 波动率的描述:用5个希腊字母估算期权理论价格
Delta值 - 当标的证券发生1单位变化时,期权理论价值的变化量
Γ Gamma值 - 当标的证券发生1单位变化时,期权Delta的变化量。
Θ Theta值 - 期权价格的变动相对于时间变化的比率.
Κ Vega值 - 当波动率变化1单位(1%)时,期权理论价值的变化量。
Ρ Rho值 - 当利率变化1%时,期权理论价值的变化量


2.7.1 Delta值
期权价格变化速率用Delta表示。当标的证券上涨时,看涨期权的Delta值将增加,看跌期权的Delta值将减少。若Delta值为0.50,意味着标的证券价格上涨或下跌1元,期权的价格将变动0.5元


例:假设Delta=0.50, 当标的证券升高或降低1元时,其期权升高或降低0.50元,见下表:

期权快要到期时,实值期权的和虚值期权的Delta值将不同。实值期权趋向于100%,虚值期权趋向于0%,如图表11。


图表11 实值、虚值期权Delta不同变化



2.7.2 Gamma值
Gamma表示当标的证券价格发生1单位变化时,期权Delta的变化量。与Delta类似,Gamma也是通过百分比的形式来表示。下例是一个标的证券价格为50元,执行价50元的期权的希腊字母示例。


说明: 股价每涨价1元,看涨期权的Delta值增加0.045 ,看跌期权的Delta值也增加0.045,见下表。



2.7.3 Theta值
Theta是用来测量时间变化对期权理论价值的影响;权利金衰减的速率;表示每经过一天,期权价值会损失多少;Theta随着到期时间的临近,呈现货型上涨;期权卖方有正的Theta,而期权买方的Theta是负的。


Theta = 期权价格变化/距离到期时间的变化;
由于只有时间价值是损耗的,具有更大内在价值的期权,其价值随时间靠近到期日的变化曲线更加平缓。例如:假设到期日某种商品期货现货2100元,对行权价格2000元的看涨期权A和行权价格2100元的看涨期权B,期权A的价值随时间减少而导致的价值下降将更平缓,见图表12。


图表12 不同商品期权随到期日的临近理论价值变化


2.7.4 Vega值
Vega表示波动率的变化,单位:元,表示由于波动率变化而导致的期权价格变化量。例: 如果一个期权的标的资产从 60元降到59元,我们估计看涨期权和看跌期权的价格都将下跌0.095 元,如下表。



2.7.5 Rho值
Rho描述的是当利率变化1%时,期权理论价格的变化量。例: 如果利率从5.11%降到4.11%,看涨期权和看跌期权的理论价格达到3.45元和3.32元。



End
查查期权在此声明,本公众号对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性不作任何保证或承诺,且不构成任何投资建议,读者操作不当后果自行承担!
  你可能还想看
1、期权看跌看涨比率的比较
2、做好期权短线交易
3、如何利用期权预测股市走势?
4、波动率是高还是低?如何判断?


分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:201
帖子:39
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP