泻药,指数加权波动率是一种波动率的度量,它使最近的观察结果有更高权重。我们将使用以下公式计算指数加权波动率:
原文链接:
http://tecdat.cn/?p=17829原文出处:
R语言中使用RCPP并行计算指数加权波动率S [t] ^ 2 = SUM(1-a)* a ^ i *(r [t-1-i]-rhat [t])^ 2,i = 0…inf
其中rhat [t]是对应的指数加权平均值
rhat [t] = SUM(1-a)* a ^ i * r [t-1-i],i = 0…inf
上面的公式取决于每个时间点的完整价格历史记录,并花了一些时间进行计算。因此,我想分享Rcpp和RcppParallel如何帮助我们减少计算时间。
我将使用汇率的历史数据集 作为测试数据。
首先,我们计算平均滚动波动率
#*****************************************************************
# 计算对数收益率
#*****************************************************************
ret = diff(log(data$prices))
tic(5)
hist.vol = sqrt(252) * bt.apply.matrix(ret, runSD, n = 200)
toc(5)
经过时间为0.17秒
接下来,让我们编写指数加权代码逻辑
# 建立 RCPP 函数计算指数加权波动率
load.packages('Rcpp')
sourceCpp(code='
#include <Rcpp.h>
using namespace Rcpp;
using namespace std;
// [[Rcpp::plugins(cpp11)]]
//ema[1] = 0
//ema[t] = (1-a)*r[t-1] + (1-a)*a*ema[t-1]
// [[Rcpp::exp
{
if(!NumericVector::is_na(x[t])) break;
res[t] = NA_REAL;
}
int start_t = t;
-a) * a^i * (r[t-1-i] - rhat[t])^2, i=0 ... inf
// [[Rcpp::export]]
NumericVector run_esd_cpp(NumericVector x, double ratio) {
auto sz = x.siz
// find start index; first non NA item
for(t = 0; t < sz; t++) {
if(!Num
0;
for(t = start_t + 1; t < sz; t++) {
ema = (1-ratio) * ( x[t-1] + ratio * ema);
double sigma = 0;
for(int i = 0; i < (t - start_t); i++) {
sigma += pow(ratio,i) * pow(x[t-1-i] - ema, 2);
}
res[t] = (1-ratio) * sigma;
}
, n, ratio = n/(n+1)) run_ema_cpp(x, ratio)
run.esd = funct
经过时间为106.16秒。
执行此代码花了一段时间。但是,代码可以并行运行。以下是RcppParallel版本。
# 建立 RCPP 并行函数计算指数加权波动率
load.packages(&#39;RcppParallel&#39;)
sourceCpp(code=&#39;
using namespace Rcpp;
using namespace s
s(cpp11)]]
// [[Rcpp::depends(R
to read from
const RMatrix<double> mat;
// internal variables
const double ratio
t;
// initialize from Rcpp input and output matrixes
run_esd_helper(const Nume
all operator that work for th
in, size_t end) {
for (size_t c1 = begin; c1 < end; c1++) {
int t;
// find start index; fir
经过时间为14.65秒
运行时间更短。接下来,让我们直观地了解使用指数加权波动率的影响
dates = &#39;2007::2010&#39;
layout(1:2)
e=&#39;h&#39;, col=&#39;black&#39;, plotX=F)
plota.legend(paste(&#39;Dai
s,1],type=&#39;l&#39;,col=&#39;black&#39;)
不出所料,指数加权波动率在最近的观察结果中占了更大的比重,是一种更具反应性的风险度量。
最受欢迎的见解
1.HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
2.WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较
3.波动率的实现:ARCH模型与HAR-RV模型
4.R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
5.使用R语言随机波动模型SV处理时间序列中的随机波动率
6.R语言多元COPULA GARCH 模型时间序列预测
7.R语言基于ARMA-GARCH过程的VAR拟合和预测
8.R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
9.R语言对S&P500股票指数进行ARIMA + GARCH交易策略 |