如何评价George Hotz在2016年9月13日TechCrunch Disrupt ...

论坛 期权论坛 金融     
吴宇   2022-7-6 22:54   25633   20
===八一八Mobileye的那点事===


不知道是不是为了博人眼球, geohot在一开场就语出惊人地列出了几家“搞笑”无人驾驶公司,首当其冲的就是Mobileye。他这样评价:
Their business modelis to work with regulators to lower the safety ratings of cars that do nothaving Mobileye chip in them.
Mobileye的商业模式,就是通过和立法者同流合污,来降低没安装Mobileye芯片的汽车的安全评级。
谁要是能通过这么奇葩的商业模式,能让一个公司17年不倒闭,反倒有90亿美元的市值,那才是人间奇迹。而事实上,Mobileye自从2001年第一代芯片以来,他们所提供的辅助驾驶、半自动驾驶系统,一直是世界上你能买到的性能最好的产品,没有之一。特斯拉的无人驾驶,也正是用的Mobileye家的EQ3解决方案,并且这里有桩轶事,早在2015年底,特斯拉就针对彭博社对geohot的不实报道,写过一篇打脸文章以正视听(原文在这里,有兴趣大家可以读读:Correction to article: "The First Person to Hack the iPhone Built a Self-Driving Car")文章最后一句是这么说的:
Their part is the bestin the world at what it does and that is why we use it.
Mobileye的视觉芯片是世界上最好的,正因为如此,我们才选择它。
然后接着语出惊人:
Because Tesla is tooinnovative and it scared them (Mobileye). After the accidents Mobileye getsscared. They want no part of innovation.
因为特斯拉太有创新精神,吓到Mobileye了。所以出事之后,他们干脆举手投降不再创新了。
这就更是无脑黑了。Tesla和Mobileye的合作是因为合同到期,双方不再续约。Mobileye创始人CEO对此曾经表态,Tesla有意无意地让人把辅助驾驶当成自动驾驶来用,这并不是Mobileye的本意,而且现阶段技术确实还做不到自动驾驶,故而不再续约。
但如果从更深层讲,这两家分手其实本来也是必然的。体量如Tesla这样的公司,必定不可能长期通过跟其他公司,而且是当前世界上拥有独一无二技术的公司合作,来构建自己的核心竞(xue)争(tou)力。

===999美元自动驾驶带回家===

在黑完一众汽车公司之后,隆重地从黑口袋里掏出他的驾驶模块
Comma one – this isall you need to drive a car
逗一——自动驾驶,有它就行。
然后淡淡地补了一句
All you need to drivea Honda car with limited self-driving capabilities
有它就能自动驾驶自带车道保持系统的本田轿车。
听到这里我一口老血险些吐到键盘上。作为自动驾驶人工智能公司的CTO,我早就围观过本田的车道保持系统(LaneKeeping Assist System, LKAS)。简单来说,这个系统可以在车速45 miles以上,路面环境清晰的时候,自动开车。
——是的,在车道线弯曲的情况下,还会自动转动方向盘。
——是的,前面车速变慢的时候,还能自动减速。这是本田以及很多其他车厂商自带的另一项叫做Adaptive Cruise Control的功能。
等等这不已经是geohot描述的自动驾驶吗?但为什么本田从来没有在TechCrunch Disrupt大会上宣称自己能做自动驾驶?因为毕竟作为负责任的汽车大厂,不能赌乘客身家性命做PR。本田在推这个产品的时候,要求驾驶员必须把手放在方向盘上,而且还老老实实地把自己做不到的场景都列出来了:
1.      车道线看不见的时候,LKAS功能不可用
2.      车速低于45英里的时候,LKAS功能不可用
3.      车道弯曲过大的时候,LKAS功能不可用
4.      打转向灯的时候,LKAS功能不可用
5.      踩刹车以后,LKAS功能不可用
在这么多限制条件下,脸皮稍微薄一点的人,自然不会说自己能做自动驾驶。事实上,目前除了采用LiDAR的Google和百度,还没有任何人声称基于机器视觉能够实现自动驾驶。
毕竟没实测过geohot的产品(而且也不敢自己测),不知道这五个限制中,他能突破哪几个。但会上他提到一个细节:
Car’s built-in frontradar… and one front facing camera, which is the same as what Tesla’s using forautopilot.
(逗一Commaone的输入包括)车内预装的前向雷达,以及单目前向摄像头;配置和Tesla一样。
这也就是说,逗一无法观察到车两侧和后方的任何信息!换句话说,逗一所谓的“自动驾驶”,很可能根本连换道都做不了。更可怕的是,逗一要安装在后视镜的位置上,也就是说上车以后再想后悔切手动都来不及。

当然geohot自己后来也承认,逗一的所谓自动驾驶,还是要人看着的:
You have to payattention, and you have to be ready to take over it at every moment
(用逗一的时候)你还是得每时每刻留着神,随时准备切换成手动开车。
那你一开始黑Mobileye黑的那么起劲儿是几个意思?!   (╯‵□′)╯︵┻━┻

===大数据和深度学习黑科技===

再接下来进入技术环节了。主持人先讲fleet learning(通过在同一路线上行驶的历史数据,增强在这段路上自动驾驶的可靠性)。Geohot不无自豪地点出自己和Mobileye(Tesla) 的区别:
When we ship this ourfleet learning will be much much fancier than Tesla’s, because we have all the videosdata. Tesla just has Mobileye feature vector and the radar
等逗一发货以后,我们的道路学习能力就要比特斯拉不知高到哪里去了,因为我们有全部原始视频数据,相比之下Tesla只有Mobileye(算法处理过的)特征向量和雷达数据。
听到这里,我已经不知该做出什么表情了,数据比别人更原始,并不是什么值得炫耀的事情。反倒会带来从传输到存储的各种工程问题。而且最关键的不是数据有多原始,而是算法怎么处理这些数据。
于是接下来,Geohot这样解释他的算法:
It’s deep learning. Ituses the camera to try to predict what a human would do in this situation. Andif it predicts something reasonable - it has an internal test for reasonability– it takes that path.
Our car has only 2000lines of code, but it also has a 5MB model that was learned using machinelearning, and you can effectively think of the model as code. This thing wasgenerated with deep learning, which is encoding all of those edge cases in it.The reason that we can do it so quickly is because we have the data. The reasonthat we can do it with so few lines of code is because that we have suchadvanced machine learning
这就是深度学习。根据摄像头输入来预测人类驾驶员会对当前场景做出何种动作。如果算法预测出来的动作靠谱(内部有额外检查机制——后文还会提到)就控制汽车执行。
我的模型有2000行代码,还包括一个学出来的5MB模型文件。这个模型你可以理解为它就是代码。它是深度学习学出来的,可以包括各种极端情况。我们之所以只花几个月就做出这个系统,是因为我们有大量数据,我们之所以只写了2000行代码,是因为机器学习非常先进。
讲真,我这辈子见过的所有心安理得地跳过全球公认技术难点,声称自己解决全部问题的,统统都是民科。

geohot大概是刚读完《21天实战Caffe》就以为自己已经领悟了深度学习的真谛。但是,这是错觉,这不是科学。

接下来主持人又问起这套系统的安全性,Geohot很有信心地答道:
First of all, our carhas very strict torc limits, on how much it can turn the steering wheel, andhow hard one can hit the brakes…
That’s really how wecan guarantee safety
我们对算法输出的扭矩有非常严格的限制,不至于猛打方向盘或者急刹车。这样我们才能保证安全。
原来这就是他刚才提的 “额外检查机制internaltest for reasonability”。要知道,Tesla自动驾驶至今为止撞的那几次,没有一次是因为你刹车或者转向不够温柔造成的!
据Geohot称,他们的训练数据只有30万英里,7900小时。拜托,这点数据在自动驾驶圈子里,提起来就让人不好意思。要知道,Tesla在首撞之前,可是已经安全行驶了1.3亿英里。
Geohot的驾驶解决方案,不论如何改头换面加上big data, deeplearning等热词,其实学术上都早已有定论。近些年人们习惯管这套做法叫 端到端的学习end-to-end learning,更早些还有模仿学习 imitation learning 等其他别名。这类方法一大局限是,只能应付见过的输入类型。如果在实测的时候,遇到的情况和训练数据差太远,超过模型不变性(invariance)所能容忍的上限,这样的系统分分钟给跪。
就连卷积网络发明人,Facebook AI Research带头人 YannLeCun杨立昆教授,都点评过geohot这种拿end-to-endlearning做自动驾驶的思路:
Training a basicConvNet to keep you in lane most of the time is fairly simple and straightforward.The problem is to make it work reliably.
The basic technique oftraining a neural net to keep you in lane was Dean Pomerleau at CMU in the late1980s, a system called ALVINN. I used imitation learning to train a ConvNet fora self-driving robot called DAVE back in 2003. This work motivated the DARPALAGR program.
What this guy is doingmay be cool, but it isn't particularly innovative.
训练个基础版卷积网络做车道线保持没什么难度,难点在于可靠性。
早在八十年代,卡耐基梅陇大学的DeanPomerleau就提出了用神经网络做车道线保持的基本模型,叫ALVINN。2003年,我用这种以模仿来学习的方式,拿卷及网络搭出过一个自动行驶机器人DAVE。后来,美国国防部高等研究计划署的LAGR项目就是源自这里。
这哥们儿的工作炫酷有余,创新不足。

试想一个主要在加州采数据的系统,它有见过几次下雨下雪?见过开夜车时候迎面来的远光灯吗?见过兔子、野猪、麋鹿站在路中间吗?见过行人、自行车横穿马路吗?更不要说让只有5MB模型文件的自动驾驶,来见识北京著名地标西直门立交桥了。
分享到 :
0 人收藏
萍水相逢,尽是他乡之客

20 个回复

倒序浏览
2#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 22:55:08 发帖IP地址来自 中国
真的有《21天实战caffe》这本书
3#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 22:55:45 发帖IP地址来自 中国
所以特斯拉撞了。。。
4#
回复自然2019  2级吧友 | 2022-7-6 22:56:33 发帖IP地址来自 北京
和我认知一致~做等18号来校讲座,希望可以讲的深一些:)
5#
正版傻白甜  1级新秀 | 2022-7-6 22:57:13 发帖IP地址来自 中国
这哥们是破解iphone那位吗?
6#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 22:57:36 发帖IP地址来自 中国
7#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 22:58:22 发帖IP地址来自 北京
抱歉,我18号可能还在跑商务。我司乃岩同学会给大家讲。欢迎提问
8#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 22:58:44 发帖IP地址来自 北京
17号复旦,应该会亲自来吧?静静等
9#
great青松不老  1级新秀 | 2022-7-6 22:59:28 发帖IP地址来自 北京
(其实我的行程我自己都不知道)目前确定11月1号我在交大。欢迎前来交流~
10#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:00:26 发帖IP地址来自 中国
已经有自动驾驶成功穿越西直门桥了吗?
11#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:00:31 发帖IP地址来自 北京
end to end 在现阶段就是个笑话
12#
ThomasPaine  1级新秀 | 2022-7-6 23:01:01 发帖IP地址来自 中国
图森的L3什么时候出啊
13#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:01:25 发帖IP地址来自 湖北
果然是民科,一个OCR模型都比5MB大,他敢用5MB训end to end自动驾驶,服
14#
西山蓝狐狸  1级新秀 | 2022-7-6 23:01:56 发帖IP地址来自 北京
穿越什么西直门 随便开进中国一个建成满五年的小区试试?
15#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:02:05 发帖IP地址来自 北京
写专栏的哥们,你这么专业。可是,矛盾很多呦。你一路在贬低这个发布辅助驾驶功能芯片的公司和他的老板。可是,特斯拉的汽车,那漫长的1.3亿公里安全无事故的所谓记录,恐怕都是在这家公司的产品的帮助下完成的吧。如果这个辅助模块不怎么地,特斯拉的汽车安全性是不是值得三思呢?另外,我十分不明白,把一个功能上存在可能很严重缺陷的辅助驾驶功能以诱人误人的方式推向市场,这就是所谓的创新吗?在不增加传感器的情况下(成本),用所谓大数据和人工智能算出来的模型来指导自动驾驶,你觉得这真的很专业吗,在人工智能还不怎么完善的情况下?

在这里给大家提个醒,特斯拉的电动车,所谓自动驾驶功能,其实就是一个可能有严重缺陷,和各种不足的辅助驾驶电子系统,其实其它厂家是有这个能力推出同样功能甚至更好功能的东西的。它们不这么做,主要还是考虑到驾乘者的安全。所以,如果你买了特斯拉的电动车,一定慎用它的所谓自动驾驶功能,慎之又慎。这关系到你的命。
16#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:02:39 发帖IP地址来自 中国
亲,阅读理解能力堪忧
17#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:03:15 发帖IP地址来自 湖北
同学你貌似完全没搞清楚逻辑,我帮你梳理下。Tesla用的是Mobileye的芯片,我没贬低Mobileye,我贬低的是geohot和comma.ai。Comma ai跟Tesla没关系…
18#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:03:45 发帖IP地址来自 中国
厉害了我的哥,你们怎么转型成自动驾驶公司啦……
19#
坟墓975  1级新秀 | 2022-7-6 23:03:51 发帖IP地址来自 北京
从来没说“基于神经网络的自动驾驶在可靠性上得不到解决”,我说的是 end-to-end learning 应付corner case的可靠性堪忧。敬请各位提升阅读理解能力。。。
20#
siren2008  2级吧友 | 2022-7-6 23:04:14 发帖IP地址来自 北京
早就转啦!
21#
吴宇  管理员  伦敦金丝雀码头交易员 | 2022-7-6 23:04:48 发帖IP地址来自 北京
抱歉,刚才的提问太蠢. 这次直接引用原文的话来问一下.

"在这么多限制条件下,脸皮稍微薄一点的人,自然不会说自己能做自动驾驶。事实上,目前除了采用LiDAR的Google和百度,还没有任何人声称基于机器视觉能够实现自动驾驶。"
---------------------------------
问:这句话的意思是不是说百度和google已经声称自己能到自动驾驶了吗? 基于机器视觉的自动驾驶相比于采用LiDAR的来说,有什么优势,又有什么问题是LiDAR解决的比较好,而机器视觉暂时还没解决的呢?

"试想一个主要在加州采数据的系统,它有见过几次下雨下雪?见过开夜车时候迎面来的远光灯吗?见过兔子、野猪、麋鹿站在路中间吗?见过行人、自行车横穿马路吗?"
---------------------------------
问:请问基于LiDAR的自动驾驶能应付这些场景吗? 基于机器视觉的自动驾驶如果想应付这些场景,除了技术工具,数据的采集是不是也是一个壁垒?
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:38337
帖子:3370
精华:36
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP