波动率模型是学界搞期权的重点,BS模型中,使用的是固定的波动率。现在提的较多的是局部波动率模型和随机波动率模型。局部波动率模型是随机波动率模型的一种简化,将波动率定义为标的价格S和时间t的函数sigma(S,t),随机波动率模型中,对波动率描述存在随机项(独立于价格中的随机项)。
局部波动率模型中,常用的是SVI模型(stochastic volatility inspired),SVI模型本质上是描述了波动率微笑曲线,并且增加了一些期权性质上的约束。
我前面研究过一次SVI模型,但由于对python里面最优化函数理解的不透,对外层使用了是穷举法,这个方法显然是不好的,只是让我初次了解这个模型的性质。最近部门一个实习生用matlab实现了一下这个模型,虽然拟合的结果并不是很好,但让我发现原来matlab里面的几个函数,如lsqlin就是二次非线性最优化,而fminsearch的函数,使用的就是Nelder-Mead Simplex方法。