看涨看跌平价定理

论坛 期权论坛 期权     
lxw6818   2019-7-14 22:55   8524   0
1、定理  Theorem 1
  (Put–call parity formula)
  (Call(K,T) − Put(K,T))erT + K = F0,T .
  If we use effective interest, the put–call parity formula becomes:
  (Call(K,T) − Put(K,T))(1 + i)T + K = F0,T
  Often, F0,T = S0(1 + i)T . This forward price applies to assets which have neither cost nor benefit associated with owning them.
  In the absence of arbitrage, we have the following>Theorem 2
  (Put–call parity formula) For a stock which does not pay any
  dividends,
  (Call(K,T) − Put(K,T))erT + K = S0erT
2、证明
Recall that the actions and payoffs corresponding to a call/put are:
  If ST < K             If K < ST
  long call           no action           buy the stock
  short call          no action           sell the stock
long put         sell the stock        no action
  short put       buy the stock        no action
                       If ST < K          If K < ST
  long call                0                    ST − K
  short call               0                −(ST − K)
  long put            K − ST                   0
  short put        −(K − ST )                0
Proof.  Consider the portfolio consisting of buying one share of stock and a K–strike put for one share; selling a K–strike call for one share;
  and borrowing S0 − Call(K,T) + Put(K,T). At time T, we have the following possibilities:
  1. If ST < K, then the put is exercised and the call is not. We finish without stock and with a payoff for the put of K.
  2. If ST > K, then the call is exercised and the put is not. We finish without stock and with a payoff for the call of K.
  In any case, the payoff of this portfolio is K. Hence, K should be equal to the return in an investment of S0 + Put(K,T) − Call(K,T) in a zero–coupon bond, i.e.
  K = (S0 + Put(K,T) − Call(K,T))erT
3、例子Example 1  The current value of XYZ stock is 75.38 per share. XYZ stock does not pay any dividends. The premium of a nine–month 80–strike call is 5.737192 per share.
  The premium of a nine–month 80–strike put is 7.482695 per share. Find the annual effective rate of interest.
  Solution: The put–call parity formula states that
  (Call(K,T) − Put(K,T))(1 + i)T + K = S0(1 + i)T .
  So,
  (5.737192 − 7.482695)(1 + i)3/4 + 80 = 75.38(1 + i)T .
  80 = (75.38 − (5.737192 − 7.482695))(1 + i)3/4 = (77.125503)(1 + i)3/4, and i = 5%.
Example 2  The current value of XYZ stock is 85 per share. XYZ stock does not pay any dividends. The premium of a six–month K–strike call is 3.329264 per share and
  the premium of a oneSolution: The put–call parity formula states that
  (Call(K,T) − Put(K,T))(1 + i)T + K = S0(1 + i)T .
  So, (3.329264 − 10.384565)(1.065)0.5 + K = 85(1.065)0.5 and
  K = (85 − 3.329264 + 10.384565)(1.065)0.5 = 95. year K–strike put is 10.384565 per share. The annual effective rate of interest is 6.5%. Find K.

分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:285
帖子:96
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP