方法1:递归方法:
(1)如果两个节点分别在根节点的左子树和右子树,则返回根节点 (2)如果两个节点都在左子树,则递归处理左子树;如果两个节点都在右子树,则递归处理右子树
bool FindNode(BTree* pRoot, BTree* pNode)
{
if (pRoot == NULL || pNode == NULL)
{
return false;
}
if (pRoot == pNode)
{
return true;
}
bool found = FindNode(pRoot->m_nLeft, pNode);
if (!found)
{
found = FindNode(pRoot->m_nRight,pNode);
}
return found;
}
BTree* GetCommentParent(BTree* pRoot, BTree* pNode1, BTree* pNode2)
{
if (FindNode(pRoot->m_nLeft,pNode1))
{
if (FindNode(pRoot->m_nRight, pNode2))
{
return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点
}
else//如果两个节点都在左子树,则递归处理左子树
{
return GetCommentParent(pRoot->m_nLeft,pNode1,pNode2);
}
}
else
{
if (FindNode(pRoot->m_nLeft,pNode2))
{
return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点
}
else//如果两个节点都在右子树,则递归处理右子树
{
return GetCommentParent(pRoot->m_nRight,pNode1,pNode2);
}
}
}
方法2:
非递归解法: 先求从根节点到两个节点的路径,然后再比较对应路径的节点就行,最后一个相同的节点也就是他们在二叉树中的最低公共祖先节点
bool GetNodePath(BTree* pRoot, BTree* pNode, list<BTree*> & path)
{
if (pRoot == pNode)
{
path.push_back(pRoot);
return true;
}
if (pRoot == NULL)
{
return false;
}
path.push_back(pRoot);
bool found = false;
found = GetNodePath(pRoot->m_nLeft,pNode,path);
if (!found)
{
found = GetNodePath(pRoot->m_nRight,pNode,path);
}
if (!found)
{
path.pop_back();
}
return found;
}
BTree* GetCommentParent2(BTree* pRoot,BTree* pNode1,BTree* pNode2)
{
if (pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
{
return NULL;
}
list<BTree*> path1;
list<BTree*> path2;
bool bResult1 = GetNodePath(pRoot,pNode1,path1);
bool bResult2 = GetNodePath(pRoot,pNode2,path2);
if (!bResult1 || !bResult2)
{
return NULL;
}
list<BTree*>::const_iterator iter1 = path1.begin();
list<BTree*>::const_iterator iter2 = path2.begin();
BTree* pCommentParent = NULL;
while (iter1 != path1.end() && iter2 != path2.end())
{
if (*iter1 == *iter2)
{
pCommentParent = *iter1;
}
iter1++;
iter2++;
}
return pCommentParent;
}
完整测试代码:
// FindCommentParent.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <iostream>
#include <list>
#include <queue>
using namespace std;
//节点的数据结构
class BTree
{
public:
int m_nValue;
BTree* m_nLeft;
BTree* m_nRight;
public:
BTree(int value)
{
m_nValue = value;
}
};
//二叉树的插入实现
void Insert(int value, BTree* &root)
{
if (root == NULL)
{
root = new BTree(value);
}
else if(value < root->m_nValue)
Insert(value,root->m_nLeft);
else if(value > root->m_nValue)
Insert(value,root->m_nRight);
else
;
}
bool FindNode(BTree* pRoot, BTree* pNode)
{
if (pRoot == NULL || pNode == NULL)
{
return false;
}
if (pRoot == pNode)
{
return true;
}
bool found = FindNode(pRoot->m_nLeft, pNode);
if (!found)
{
found = FindNode(pRoot->m_nRight,pNode);
}
return found;
}
BTree* GetCommentParent(BTree* pRoot, BTree* pNode1, BTree* pNode2)
{
if (FindNode(pRoot->m_nLeft,pNode1))
{
if (FindNode(pRoot->m_nRight, pNode2))
{
return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点
}
else//如果两个节点都在左子树,则递归处理左子树
{
return GetCommentParent(pRoot->m_nLeft,pNode1,pNode2);
}
}
else
{
if (FindNode(pRoot->m_nLeft,pNode2))
{
return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点
}
else//如果两个节点都在右子树,则递归处理右子树
{
return GetCommentParent(pRoot->m_nRight,pNode1,pNode2);
}
}
}
bool GetNodePath(BTree* pRoot, BTree* pNode, list<BTree*> & path)
{
if (pRoot == pNode)
{
path.push_back(pRoot);
return true;
}
if (pRoot == NULL)
{
return false;
}
path.push_back(pRoot);
bool found = false;
found = GetNodePath(pRoot->m_nLeft,pNode,path);
if (!found)
{
found = GetNodePath(pRoot->m_nRight,pNode,path);
}
if (!found)
{
path.pop_back();
}
return found;
}
BTree* GetCommentParent2(BTree* pRoot,BTree* pNode1,BTree* pNode2)
{
if (pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
{
return NULL;
}
list<BTree*> path1;
list<BTree*> path2;
bool bResult1 = GetNodePath(pRoot,pNode1,path1);
bool bResult2 = GetNodePath(pRoot,pNode2,path2);
if (!bResult1 || !bResult2)
{
return NULL;
}
list<BTree*>::const_iterator iter1 = path1.begin();
list<BTree*>::const_iterator iter2 = path2.begin();
BTree* pCommentParent = NULL;
while (iter1 != path1.end() && iter2 != path2.end())
{
if (*iter1 == *iter2)
{
pCommentParent = *iter1;
}
iter1++;
iter2++;
}
return pCommentParent;
}
BTree* findOneNode(BTree* pRoot, int value)
{
if (pRoot == NULL)
{
return NULL;
}
queue<BTree*> q;
q.push(pRoot);
BTree* ret = NULL;
while (!q.empty())
{
BTree* pNode = q.front();
q.pop();
if (pNode->m_nValue == value)
{
return pNode;
}
else
{
if (pNode->m_nLeft != NULL)
{
q.push(pNode->m_nLeft);
}
if (pNode->m_nRight != NULL)
{
q.push(pNode->m_nRight);
}
}
}
}
int _tmain(int argc, _TCHAR* argv[])
{
BTree* m_pRoot = new BTree(5);
Insert(6,m_pRoot);
Insert(3,m_pRoot);
Insert(4,m_pRoot);
Insert(2,m_pRoot);
BTree* node = findOneNode(m_pRoot,2);
BTree* node2 = findOneNode(m_pRoot,6);
BTree* pNode = GetCommentParent2(m_pRoot,node,node2);
cout<<pNode->m_nValue<<endl;
getchar();
return 0;
}
|