您可以使用pyspark.sql.Window来实现此目的,该命令按clientDateTime,pyspark.sql.functions.concat_ws和pyspark.sql.functions.collect_list的顺序排序:
import pyspark.sql.functions as f
from pyspark.sql import Window
w = Window.orderBy("DateTime") # define Window for ordering
df.drop("Seq", "sessionCount", "row_number").select(
"*",
f.concat_ws(
"",
f.collect_list(f.col("name")).over(w)
).alias("effective_name")
).show(truncate=False)
#+---------------+--------------+-------------------------+
#|name | DateTime|effective_name |
#+---------------+--------------+-------------------------+
#|abc |1521572913344 |abc |
#|xyz |1521572916109 |abcxyz |
#|rafa |1521572916118 |abcxyzrafa |
#|{} |1521572916129 |abcxyzrafa{} |
#|experience |1521572917816 |abcxyzrafa{}experience |
#+---------------+--------------+-------------------------+
我删除了“ Seq”,“ sessionCount”,“ row_number”,以使输出显示更加友好.
如果需要按组进行此操作,则可以向Window添加partitionBy.说在这种情况下,您要按sessionSeq分组,可以执行以下操作:
w = Window.partitionBy("Seq").orderBy("DateTime")
df.drop("sessionCount", "row_number").select(
"*",
f.concat_ws(
"",
f.collect_list(f.col("name")).over(w)
).alias("effective_name")
).show(truncate=False)
#+---------------+--------------+----------+-------------------------+
#|name | DateTime|sessionSeq|effective_name |
#+---------------+--------------+----------+-------------------------+
#|abc |1521572913344 |17 |abc |
#|xyz |1521572916109 |17 |abcxyz |
#|rafa |1521572916118 |17 |abcxyzrafa |
#|{} |1521572916129 |17 |abcxyzrafa{} |
#|experience |1521572917816 |17 |abcxyzrafa{}experience |
#+---------------+--------------+----------+-------------------------+
如果您更喜欢使用withColumn,则以上内容等效于:
df.drop("sessionCount", "row_number").withColumn(
"effective_name",
f.concat_ws(
"",
f.collect_list(f.col("name")).over(w)
)
).show(truncate=False)
说明
您要在多个行上应用一个函数,这称为聚合.对于任何聚合,您都需要定义要聚合的行以及顺序.我们使用窗口来执行此操作.在这种情况下,w = Window.partitionBy(“ Seq”).orderBy(“ DateTime”)将按Seq对数据进行分区,并按DateTime进行排序.
我们首先在窗口上应用聚合函数collect_list(“ name”).这将从“名称”列中收集所有值,并将它们放在列表中.插入顺序由窗口的顺序定义.
例如,此步骤的中间输出将是:
df.select(
f.collect_list("name").over(w).alias("collected")
).show()
#+--------------------------------+
#|collected |
#+--------------------------------+
#|[abc] |
#|[abc, xyz] |
#|[abc, xyz, rafa] |
#|[abc, xyz, rafa, {}] |
#|[abc, xyz, rafa, {}, experience]|
#+--------------------------------+
现在,适当的值已在列表中,我们可以将它们与空字符串连接起来作为分隔符.
df.select(
f.concat_ws(
"",
f.collect_list("name").over(w)
).alias("concatenated")
).show()
#+-----------------------+
#|concatenated |
#+-----------------------+
#|abc |
#|abcxyz |
#|abcxyzrafa |
#|abcxyzrafa{} |
#|abcxyzrafa{}experience |
#+-----------------------+