范畴论完全装逼手册

论坛 期权论坛     
选择匿名的用户   2021-5-30 01:40   65   0
<div class="blogpost-body" id="cnblogs_post_body">
<div id="content">
  <h1 class="title">范畴论完全装逼手册 / Grokking Monad 范畴论完全装逼手册(一) / Grokking Monad 范畴论完全装逼手册(二) / Grokking Monad 范畴论完全装逼手册(三) / Grokking Monad</h1>
  <h2>Table of Contents</h2>
  <div id="text-table-of-contents">
   <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#orgae2c686">第一部分:范畴论Catergory Theory</a>
     <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#org2fb9cc7"><em>Category</em></a>
       <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#org78ed8fb"><em>Hask</em></a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgd99c79a"><em>Duel</em></a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org4a244f1"><em>函子Functor</em></a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgd664f27"><em>Cat&#43;猫&#43;</em></a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org94ab935"><em>自然变换Natural Transformations</em></a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgf240f04">String Diagram</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgd75b1b6"><em>Adjunction Functor</em> 伴随函子</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgf7502df">从伴随函子到 单子Monad</a>
       <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#orgb3f494e">三角等式</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org3c62e5f">结合律</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgd1e6262">Yoneda lemma / <del>米田共</del> 米田引理</a>
       <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#org96e833d">Rank N Type</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org1c9cce9"><em>Kleisli Catergory</em></a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org0dad3cc">Summary</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org2b7cb9a">第二部分:食用猫呢Practical Monads</a>
     <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#orgf7e274f">Identity</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org7218431">Maybe</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgb670b82">Either</a>
       <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#orgc4a7595">Product &amp; Coproduct</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgaedcc31">Either Monad</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org9839e89">Reader</a>
       <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#org313e4d2">do notation</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org4846980">Writer</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgb445aee">State</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org357ad98">Validation</a>
       <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#org3016960">含幺半群Monoid</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org827fffb">回到 Validation</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgbfacc21">Cont</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgfa976fd">Summary</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgd418994">第三部分:搞基猫呢Advanced Monads</a>
     <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#org2821f6a">RWS</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org43f54e7">Monad Transform</a>
       <ul><li><a href="https://blog.oyanglul.us/grokking-monad/#orgef380d3">ReaderT</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org660c769">Alternative</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org9797fd6">MonadPlus</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#org4c52cac">ST Monad</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgce622be">Free Monad</a></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgbcb3f9c">Eff</a></li></ul></li><li><a href="https://blog.oyanglul.us/grokking-monad/#orgc0b7457">References</a></li></ul>
  </div>
  <div class="org-center">
   <p>FBI Warning</p> 本文所有文字与图片遵循
   <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/">CC 署名-非商业性使用-禁止演绎 3.0 许可协议</a>
   <br>
   <a href="https://creativecommons.org/licenses/by-nc-nd/3.0/deed.zh"><img alt="Creative Commons License" src="https://beijingoptbbs.oss-cn-beijing.aliyuncs.com/cs/5606289-cb66fbcd99ba5cd589921c72a3ef6248.png"></a>
  </div>
  <p>?PDF,kindle, epub格式的书现已开放购买…</p>
  <p>购买链接是 gumroad,需要科学上网才能点开,如果你不能科学上网,就不要买了(当然也没法买),把这六块钱投资到科学上网上吧。</p>
  <div class="gumroad-product-embed">
   <a href="https://gumroad.com/l/grokking-monad"><img alt="" src="https://beijingoptbbs.oss-cn-beijing.aliyuncs.com/cs/5606289-838487c73d41629aedd54742bbfbbdbd.jpg"></a>
  </div>
  <p>?免费在线阅读</p>
  <ul class="org-ul"><li><strong><a href="https://blog.oyanglul.us/grokking-monad/part1">第一部分:猫论</a></strong> ?</li><li><a href="https://blog.oyanglul.us/grokking-mon
分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:3875789
帖子:775174
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP